Goal of the project : Detecting Temporal Boundaries in Sign Language videos

Overview

MVA RecVis course final project :

Goal of the project : Detecting Temporal Boundaries in Sign Language videos.

Sign language automatic indexing is an important challenge to develop better communication tools for the deaf community. However, annotated datasets for sign langage are limited, and there are few people with skills to anotate such data, which makes it hard to train performant machine learning models. An important challenge is therefore to :

  • Increase available training datasets.
  • Make labeling easier for professionnals to reduce risks of bad annotations.

In this context, techniques have emerged to perform automatic sign segmentation in videos, by marking the boundaries between individual signs in sign language videos. The developpment of such tools offers the potential to alleviate the limited supply of labelled dataset currently available for sign research.

demo

Previous work and personal contribution :

This repository provides code for the Object Recognition & Computer Vision (RecVis) course Final project. For more details please refer the the project report report.pdf. In this project, we reproduced the results obtained on the following paper (by using the code from this repository) :

We used the pre-extracted frame-level features obtained by applying the I3D model on videos to retrain the MS-TCN architecture for frame-level binary classification and reproduce the papers results. The tests folder proposes a notebook for reproducing the original paper results, with a meanF1B = 68.68 on the evaluation set of the BSL Corpus.

We further implemented new models in order to improve this result. We wanted to try attention based models as they have received recently a huge gain of interest in the vision research community. We first tried to train a Vanilla Transformer Encoder from scratch, but the results were not satisfactory.

  • Attention Is All You Need, Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin: (2018).

We then implemented the ASFormer model (Transformer for Action Segementation), using this code : a hybrid transformer model using some interesting ideas from the MS-TCN architecture. The motivations behind the model and its architecture are detailed in the following paper :

We trained this model on the I3D extracted features and obtained an improvement over the MS-TCN architecture. The results are given in the following table :

ID Model mF1B mF1S
1 MS-TCN 68.68±0.6 47.71±0.8
2 Transformer Encoder 60.28±0.3 42.70±0.2
3 ASFormer 69.79±0.2 49.23±1.2

Contents

Setup

# Clone this repository
git clone https://github.com/loubnabnl/Sign-Segmentation-with-Transformers.git
cd Sign-Segmentation-with-Transformers/
# Create signseg_env environment
conda env create -f environment.yml
conda activate signseg_env

Data and models

You can download the pretrained models (I3D and MS-TCN) (models.zip [302MB]) and data (data.zip [5.5GB]) used in the experiments here or by executing download/download_*.sh. The unzipped data/ and models/ folders should be located on the root directory of the repository (for using the demo downloading the models folder is sufficient).

You can download our best pretrained ASFormer model weights here.

Data:

Please cite the original datasets when using the data: BSL Corpus The authors of github.com/RenzKa/sign-segmentation provided the pre-extracted features and metadata. See here for a detailed description of the data files.

  • Features: data/features/*/*/features.mat
  • Metadata: data/info/*/info.pkl

Models:

  • I3D weights, trained for sign classification: models/i3d/*.pth.tar
  • MS-TCN weights for the demo (see tables below for links to the other models): models/ms-tcn/*.model
  • As_former weights of our best model : models/asformer/*.model

The folder structure should be as below:

sign-segmentation/models/
  i3d/
    i3d_kinetics_bslcp.pth.tar
  ms-tcn/
    mstcn_bslcp_i3d_bslcp.model
  asformer/
    best_asformer_bslcp.model

Demo

The demo folder contains a sample script to estimate the segments of a given sign language video, one can run demo.pyto get a visualization on a sample video.

cd demo
python demo.py

The demo will:

  1. use the models/i3d/i3d_kinetics_bslcp.pth.tar pretrained I3D model to extract features,
  2. use the models/asformer/best_asformer_model.model pretrained ASFormer model to predict the segments out of the features.
  3. save results.

Training

To train I3D please refer to github.com/RenzKa/sign-segmentation. To train ASFormer on the pre-extracted I3D features run main.py, you can change hyperparameters in the arguments inside the file. Or you can run the notebook in the folder test_asformer.

Citation

If you use this code and data, please cite the original papers following:

@inproceedings{Renz2021signsegmentation_a,
    author       = "Katrin Renz and Nicolaj C. Stache and Samuel Albanie and G{\"u}l Varol",
    title        = "Sign Language Segmentation with Temporal Convolutional Networks",
    booktitle    = "ICASSP",
    year         = "2021",
}
@article{yi2021asformer,
  title={Asformer: Transformer for action segmentation},
  author={Yi, Fangqiu and Wen, Hongyu and Jiang, Tingting},
  journal={arXiv preprint arXiv:2110.08568},
  year={2021}
}

License

The license in this repository only covers the code. For data.zip and models.zip we refer to the terms of conditions of original datasets.

Acknowledgements

The code builds on the github.com/RenzKa/sign-segmentation and github.com/ChinaYi/ASFormer repositories.

Owner
Loubna Ben Allal
MVA (Mathematics, Vision, Learning) student at ENS Paris Saclay.
Loubna Ben Allal
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022