This repo uses a combination of logits and feature distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset.

Overview

PSPNet-logits and feature-distillation

Introduction

This repository is based on PSPNet and modified from semseg and Pixelwise_Knowledge_Distillation_PSPNet18 which uses a logits knowledge distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset(Enhanced Version).

Innovation and Limitations

This repo adds a feature distillation in the aux layer of PSPNet without a linear feature mapping since the teacher and student model's output dimension after the aux layer is the same. On the other hand, if you want to adapt this repo to other structures, a mapping should be needed. Also, the output of the aux layer is very close to which of the final layer, so you should pay attention to the overfitting problem. Or you can distillate the features in earlier layers and add a mapping, of course, just like Fitnet.

For reimplementation

Please download related datasets and symlink the relevant paths. The temperature parameter(T) and corresponding weights can be changed flexibly. All the numbers showed in the name of python code indicate the number of layers; for instance, train_50_18.py represents the distillation of 50 layers to 18 layers.

Please note that you should train a teacher model( PSPNet model of ResNet50 backbone) at first, and save the checkpoints or just use a well trained PSPNet50 model, which you can refer to the original public code at semseg, and you should download the initial models and corresponding lists in semseg and put them in right paths, also all the environmental requirements in this repo are the same as semseg.

Usage

  1. Requirement: PyTorch>=1.1.0, Python3, tensorboardX, GPU
  2. Clone the repository:
git clone https://github.com/asaander719/PSPNet-knowledge-distillation.git
  1. Download initialization models and lists, also trained models and predictions can be optional, by the link shows in semseg, and put them in files followed by instructions.
  2. Download official dataset PASCAL-VOC2012, please note that it is Enhanced Version,and put them in corresponding paths follwed by data lists.
  3. Train and test a teacher model: adjust parameters in config (voc2012_pspnet50.yaml), like layers. etc.., and the checkpoints will be saved automaticly, or you can just download a trained model, and put it in a right path.
python train_50.py
python test_50.py
  1. Train and test a student model(optional, only for comparison): adjust parameters in config (voc2012_pspnet18.yaml), like layers. etc.., and the checkpoints will be saved automaticly, or you can just download a trained model, and put it in a right path.
python train_18.py
python test_18.py
  1. Distillation and Test: the results should between the teacher and the student model.

Please note that you should adjust some parameters when you use fuctions in the file named model.

python train_50_18_my.py
python test_50_18.py

Reference

@misc{semseg2019, author={Zhao, Hengshuang}, title={semseg}, howpublished={\url{https://github.com/hszhao/semseg}}, year={2019} }

@inproceedings{zhao2017pspnet, title={Pyramid Scene Parsing Network}, author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya}, booktitle={CVPR}, year={2017} }

@inproceedings{zhao2018psanet, title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing}, author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya}, booktitle={ECCV}, year={2018} }

Owner
LIAO Shuiying
LIAO Shuiying
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023