This repo uses a combination of logits and feature distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset.

Overview

PSPNet-logits and feature-distillation

Introduction

This repository is based on PSPNet and modified from semseg and Pixelwise_Knowledge_Distillation_PSPNet18 which uses a logits knowledge distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset(Enhanced Version).

Innovation and Limitations

This repo adds a feature distillation in the aux layer of PSPNet without a linear feature mapping since the teacher and student model's output dimension after the aux layer is the same. On the other hand, if you want to adapt this repo to other structures, a mapping should be needed. Also, the output of the aux layer is very close to which of the final layer, so you should pay attention to the overfitting problem. Or you can distillate the features in earlier layers and add a mapping, of course, just like Fitnet.

For reimplementation

Please download related datasets and symlink the relevant paths. The temperature parameter(T) and corresponding weights can be changed flexibly. All the numbers showed in the name of python code indicate the number of layers; for instance, train_50_18.py represents the distillation of 50 layers to 18 layers.

Please note that you should train a teacher model( PSPNet model of ResNet50 backbone) at first, and save the checkpoints or just use a well trained PSPNet50 model, which you can refer to the original public code at semseg, and you should download the initial models and corresponding lists in semseg and put them in right paths, also all the environmental requirements in this repo are the same as semseg.

Usage

  1. Requirement: PyTorch>=1.1.0, Python3, tensorboardX, GPU
  2. Clone the repository:
git clone https://github.com/asaander719/PSPNet-knowledge-distillation.git
  1. Download initialization models and lists, also trained models and predictions can be optional, by the link shows in semseg, and put them in files followed by instructions.
  2. Download official dataset PASCAL-VOC2012, please note that it is Enhanced Version,and put them in corresponding paths follwed by data lists.
  3. Train and test a teacher model: adjust parameters in config (voc2012_pspnet50.yaml), like layers. etc.., and the checkpoints will be saved automaticly, or you can just download a trained model, and put it in a right path.
python train_50.py
python test_50.py
  1. Train and test a student model(optional, only for comparison): adjust parameters in config (voc2012_pspnet18.yaml), like layers. etc.., and the checkpoints will be saved automaticly, or you can just download a trained model, and put it in a right path.
python train_18.py
python test_18.py
  1. Distillation and Test: the results should between the teacher and the student model.

Please note that you should adjust some parameters when you use fuctions in the file named model.

python train_50_18_my.py
python test_50_18.py

Reference

@misc{semseg2019, author={Zhao, Hengshuang}, title={semseg}, howpublished={\url{https://github.com/hszhao/semseg}}, year={2019} }

@inproceedings{zhao2017pspnet, title={Pyramid Scene Parsing Network}, author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya}, booktitle={CVPR}, year={2017} }

@inproceedings{zhao2018psanet, title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing}, author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya}, booktitle={ECCV}, year={2018} }

Owner
LIAO Shuiying
LIAO Shuiying
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022