TeST: Temporal-Stable Thresholding for Semi-supervised Learning

Related tags

Deep LearningTeST
Overview

TeST: Temporal-Stable Thresholding for Semi-supervised Learning


TeST Illustration

Semi-supervised learning (SSL) offers an effective method for large-scale data scenes that can utilize large amounts of unlabeled samples. The mainstream SSL approaches use only the criterion of fixed confidence threshold to assess whether the prediction of a sample is of sufficiently high quality to serve as a pseudo-label. However, this simple quality assessment ignores how well the model learns a sample and the uncertainty possessed by that sample itself, failing to fully exploit a large number of correct samples below the confidence threshold. We propose a novel pseudo-label quality assessment method, TeST (Temporal-Stable Thresholding), to design the adaptive thresholds for each instance to recall high-quality samples that are more likely to be correct but discarded by a fixed threshold. We first record the predictions of all instances over a continuous time series. Then we calculate the mean and standard deviation of these predictions to reflect the learning status and temporal uncertainty of the samples, respectively, and use to select pseudo-labels dynamically. In addition, we introduce more diverse samples for TeST to be supervised by high-quality pseudo-labels, thus reducing the uncertainty of overall samples. Our method achieves state-of-the-art performance in various SSL benchmarks, including $5.33%$ and $4.52%$ accuracy improvements on CIFAR-10 with 40 labels and Mini-ImageNet with 4000 labels, respectively. The ablation study further demonstrates that TeST is capable of extending the high-quality pseudo-labels with more temporal-stable and correct pseudo-labels.

Requirements

All experiments are done with python 3.7, torch==1.7.1; torchvision==0.8.2

Prepare environment

  1. Create conda virtual environment and activate it.
conda create -n tst python=3.7 -y
conda activate tst
  1. Install PyTorch and torchvision following the official instructions.
conda install pytorch==1.7.1 torchvision==0.8.2 -c pytorch

Prepare environment

git clone https://github.com/Harry887/TeST.git
cd tst
pip install -r requirements.txt
pip install -v -e .  # or "python setup.py develop"

Training

FixMatch for CIFAR10 with 250 labels

python tst/tools/train_semi.py -d 0-3 -b 64 -f tst/exps/fixmatch/fixmatch_cifar10_exp.py --exp-options out=outputs/exp/cifar10/250/[email protected]_4x16

TeST for Mini-ImageNet with 4000 labels

python tst/tools/train_semi_tst_dual.py -d 0-3 -b 64 -f tst/exps/tst/tst_miniimagenet_dual_exp.py --exp-options out=outputs/exp/miniimagenet/4000/[email protected]_4x16

Development

pre-commit code check

pip install -r requirements-dev.txt
pre-commit install
Owner
Xiong Weiyu
Xiong Weiyu
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022