Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

Overview

DeepXML

Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents


Architectures and algorithms

DeepXML supports multiple feature architectures such as Bag-of-embedding/Astec, RNN, CNN etc. The code uses a json file to construct the feature architecture. Features could be computed using following encoders:

  • Bag-of-embedding/Astec: As used in the DeepXML paper [1].
  • RNN: RNN based sequential models. Support for RNN, GRU, and LSTM.
  • XML-CNN: CNN architecture as proposed in the XML-CNN paper [4].

Best Practices for features creation


  • Adding sub-words on top of unigrams to the vocabulary can help in training more accurate embeddings and classifiers.

Setting up


Expected directory structure

+-- 
   
    
|  +-- programs
|  |  +-- deepxml
|  |    +-- deepxml
|  +-- data
|    +-- 
    
     
|  +-- models
|  +-- results


    
   

Download data for Astec

* Download the (zipped file) BoW features from XML repository.  
* Extract the zipped file into data directory. 
* The following files should be available in 
   
    /data/
    
      for new datasets (ignore the next step)
    - trn_X_Xf.txt
    - trn_X_Y.txt
    - tst_X_Xf.txt
    - tst_X_Y.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy
* The following files should be available in 
     
      /data/
      
        if the dataset is in old format (please refer to next step to convert the data to new format)
    - train.txt
    - test.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy 

      
     
    
   

Convert to new data format

# A perl script is provided (in deepxml/tools) to convert the data into new format as expected by Astec
# Either set the $data_dir variable to the data directory of a particular dataset or replace it with the path
perl convert_format.pl $data_dir/train.txt $data_dir/trn_X_Xf.txt $data_dir/trn_X_Y.txt
perl convert_format.pl $data_dir/test.txt $data_dir/tst_X_Xf.txt $data_dir/tst_X_Y.txt

Example use cases


A single learner with DeepXML framework

The DeepXML framework can be utilized as follows. A json file is used to specify architecture and other arguments. Please refer to the full documentation below for more details.

./run_main.sh 0 DeepXML EURLex-4K 0 108

An ensemble of multiple learners with DeepXML framework

An ensemble can be trained as follows. A json file is used to specify architecture and other arguments.

./run_main.sh 0 DeepXML EURLex-4K 0 108,666,786

Full Documentation

./run_main.sh 
    
     
      
       
       
         * gpu_id: Run the program on this GPU. * framework - DeepXML: Divides the XML problems in 4 modules as proposed in the paper. - DeepXML-OVA: Train the architecture in 1-vs-all fashion [4][5], i.e., loss is computed for each label in each iteration. - DeepXML-ANNS: Train the architecture using a label shortlist. Support is available for a fixed graph or periodic training of the ANNS graph. * dataset - Name of the dataset. - Astec expects the following files in 
        
         /data/
         
           - trn_X_Xf.txt - trn_X_Y.txt - tst_X_Xf.txt - tst_X_Y.txt - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy - You can set the 'embedding_dims' in config file to switch between 300d and 512d embeddings. * version - different runs could be managed by version and seed. - models and results are stored with this argument. * seed - seed value as used by numpy and PyTorch. - an ensemble is learned if multiple comma separated values are passed. 
         
        
       
      
     
    
   

Notes

* Other file formats such as npy, npz, pickle are also supported.
* Initializing with token embeddings (computed from FastText) leads to noticible accuracy gain in Astec. Please ensure that the token embedding file is available in data directory, if 'init=token_embeddings', otherwise it'll throw an error.
* Config files are made available in deepxml/configs/
   
    /
    
      for datasets in XC repository. You can use them when trying out Astec/DeepXML on new datasets.
* We conducted our experiments on a 24-core Intel Xeon 2.6 GHz machine with 440GB RAM with a single Nvidia P40 GPU. 128GB memory should suffice for most datasets.
* Astec make use of CPU (mainly for nmslib) as well as GPU. 

    
   

Cite as

@InProceedings{Dahiya21,
    author = "Dahiya, K. and Saini, D. and Mittal, A. and Shaw, A. and Dave, K. and Soni, A. and Jain, H. and Agarwal, S. and Varma, M.",
    title = "DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents",
    booktitle = "Proceedings of the ACM International Conference on Web Search and Data Mining",
    month = "March",
    year = "2021"
}

YOU MAY ALSO LIKE

References


[1] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma. Deepxml: A deep extreme multi-label learning framework applied to short text documents. In WSDM, 2021.

[2] pyxclib: https://github.com/kunaldahiya/pyxclib

[3] H. Jain, V. Balasubramanian, B. Chunduri and M. Varma, Slice: Scalable linear extreme classifiers trained on 100 million labels for related searches, In WSDM 2019.

[4] J. Liu, W.-C. Chang, Y. Wu and Y. Yang, XML-CNN: Deep Learning for Extreme Multi-label Text Classification, In SIGIR 2017.

[5] R. Babbar, and B. Schölkopf, DiSMEC - Distributed Sparse Machines for Extreme Multi-label Classification In WSDM, 2017.

[6] P., Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information. In TACL, 2017.

Owner
Extreme Classification
Extreme Classification
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022