Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

Overview

DeepXML

Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents


Architectures and algorithms

DeepXML supports multiple feature architectures such as Bag-of-embedding/Astec, RNN, CNN etc. The code uses a json file to construct the feature architecture. Features could be computed using following encoders:

  • Bag-of-embedding/Astec: As used in the DeepXML paper [1].
  • RNN: RNN based sequential models. Support for RNN, GRU, and LSTM.
  • XML-CNN: CNN architecture as proposed in the XML-CNN paper [4].

Best Practices for features creation


  • Adding sub-words on top of unigrams to the vocabulary can help in training more accurate embeddings and classifiers.

Setting up


Expected directory structure

+-- 
   
    
|  +-- programs
|  |  +-- deepxml
|  |    +-- deepxml
|  +-- data
|    +-- 
    
     
|  +-- models
|  +-- results


    
   

Download data for Astec

* Download the (zipped file) BoW features from XML repository.  
* Extract the zipped file into data directory. 
* The following files should be available in 
   
    /data/
    
      for new datasets (ignore the next step)
    - trn_X_Xf.txt
    - trn_X_Y.txt
    - tst_X_Xf.txt
    - tst_X_Y.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy
* The following files should be available in 
     
      /data/
      
        if the dataset is in old format (please refer to next step to convert the data to new format)
    - train.txt
    - test.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy 

      
     
    
   

Convert to new data format

# A perl script is provided (in deepxml/tools) to convert the data into new format as expected by Astec
# Either set the $data_dir variable to the data directory of a particular dataset or replace it with the path
perl convert_format.pl $data_dir/train.txt $data_dir/trn_X_Xf.txt $data_dir/trn_X_Y.txt
perl convert_format.pl $data_dir/test.txt $data_dir/tst_X_Xf.txt $data_dir/tst_X_Y.txt

Example use cases


A single learner with DeepXML framework

The DeepXML framework can be utilized as follows. A json file is used to specify architecture and other arguments. Please refer to the full documentation below for more details.

./run_main.sh 0 DeepXML EURLex-4K 0 108

An ensemble of multiple learners with DeepXML framework

An ensemble can be trained as follows. A json file is used to specify architecture and other arguments.

./run_main.sh 0 DeepXML EURLex-4K 0 108,666,786

Full Documentation

./run_main.sh 
    
     
      
       
       
         * gpu_id: Run the program on this GPU. * framework - DeepXML: Divides the XML problems in 4 modules as proposed in the paper. - DeepXML-OVA: Train the architecture in 1-vs-all fashion [4][5], i.e., loss is computed for each label in each iteration. - DeepXML-ANNS: Train the architecture using a label shortlist. Support is available for a fixed graph or periodic training of the ANNS graph. * dataset - Name of the dataset. - Astec expects the following files in 
        
         /data/
         
           - trn_X_Xf.txt - trn_X_Y.txt - tst_X_Xf.txt - tst_X_Y.txt - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy - You can set the 'embedding_dims' in config file to switch between 300d and 512d embeddings. * version - different runs could be managed by version and seed. - models and results are stored with this argument. * seed - seed value as used by numpy and PyTorch. - an ensemble is learned if multiple comma separated values are passed. 
         
        
       
      
     
    
   

Notes

* Other file formats such as npy, npz, pickle are also supported.
* Initializing with token embeddings (computed from FastText) leads to noticible accuracy gain in Astec. Please ensure that the token embedding file is available in data directory, if 'init=token_embeddings', otherwise it'll throw an error.
* Config files are made available in deepxml/configs/
   
    /
    
      for datasets in XC repository. You can use them when trying out Astec/DeepXML on new datasets.
* We conducted our experiments on a 24-core Intel Xeon 2.6 GHz machine with 440GB RAM with a single Nvidia P40 GPU. 128GB memory should suffice for most datasets.
* Astec make use of CPU (mainly for nmslib) as well as GPU. 

    
   

Cite as

@InProceedings{Dahiya21,
    author = "Dahiya, K. and Saini, D. and Mittal, A. and Shaw, A. and Dave, K. and Soni, A. and Jain, H. and Agarwal, S. and Varma, M.",
    title = "DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents",
    booktitle = "Proceedings of the ACM International Conference on Web Search and Data Mining",
    month = "March",
    year = "2021"
}

YOU MAY ALSO LIKE

References


[1] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma. Deepxml: A deep extreme multi-label learning framework applied to short text documents. In WSDM, 2021.

[2] pyxclib: https://github.com/kunaldahiya/pyxclib

[3] H. Jain, V. Balasubramanian, B. Chunduri and M. Varma, Slice: Scalable linear extreme classifiers trained on 100 million labels for related searches, In WSDM 2019.

[4] J. Liu, W.-C. Chang, Y. Wu and Y. Yang, XML-CNN: Deep Learning for Extreme Multi-label Text Classification, In SIGIR 2017.

[5] R. Babbar, and B. Schölkopf, DiSMEC - Distributed Sparse Machines for Extreme Multi-label Classification In WSDM, 2017.

[6] P., Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information. In TACL, 2017.

Owner
Extreme Classification
Extreme Classification
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022