Ensembling Off-the-shelf Models for GAN Training

Overview

Data-Efficient GANs with DiffAugment

project | paper | datasets | video | slides

Generated using only 100 images of Obama, grumpy cats, pandas, the Bridge of Sighs, the Medici Fountain, the Temple of Heaven, without pre-training.

[NEW!] PyTorch training with DiffAugment-stylegan2-pytorch is now available!

[NEW!] Our Colab tutorial is released!

[NEW!] FFHQ training is supported! See the DiffAugment-stylegan2 README.

[NEW!] Time to generate 100-shot interpolation videos with generate_gif.py!

[NEW!] Our DiffAugment-biggan-imagenet repo (for TPU training) is released!

[NEW!] Our DiffAugment-biggan-cifar PyTorch repo is released!

This repository contains our implementation of Differentiable Augmentation (DiffAugment) in both PyTorch and TensorFlow. It can be used to significantly improve the data efficiency for GAN training. We have provided DiffAugment-stylegan2 (TensorFlow) and DiffAugment-stylegan2-pytorch, DiffAugment-biggan-cifar (PyTorch) for GPU training, and DiffAugment-biggan-imagenet (TensorFlow) for TPU training.

Low-shot generation without pre-training. With DiffAugment, our model can generate high-fidelity images using only 100 Obama portraits, grumpy cats, or pandas from our collected 100-shot datasets, 160 cats or 389 dogs from the AnimalFace dataset at 256×256 resolution.

Unconditional generation results on CIFAR-10. StyleGAN2’s performance drastically degrades given less training data. With DiffAugment, we are able to roughly match its FID and outperform its Inception Score (IS) using only 20% training data.

Differentiable Augmentation for Data-Efficient GAN Training
Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han
MIT, Tsinghua University, Adobe Research, CMU
arXiv

Overview

Overview of DiffAugment for updating D (left) and G (right). DiffAugment applies the augmentation T to both the real sample x and the generated output G(z). When we update G, gradients need to be back-propagated through T (iii), which requires T to be differentiable w.r.t. the input.

Training and Generation with 100 Images

To generate an interpolation video using our pre-trained models:

cd DiffAugment-stylegan2
python generate_gif.py -r mit-han-lab:DiffAugment-stylegan2-100-shot-obama.pkl -o obama.gif

or to train a new model:

python run_low_shot.py --dataset=100-shot-obama --num-gpus=4

You may also try out 100-shot-grumpy_cat, 100-shot-panda, 100-shot-bridge_of_sighs, 100-shot-medici_fountain, 100-shot-temple_of_heaven, 100-shot-wuzhen, or the folder containing your own training images. Please refer to the DiffAugment-stylegan2 README for the dependencies and details.

[NEW!] PyTorch training is now available:

cd DiffAugment-stylegan2-pytorch
python train.py --outdir=training-runs --data=https://data-efficient-gans.mit.edu/datasets/100-shot-obama.zip --gpus=1

DiffAugment for StyleGAN2

To run StyleGAN2 + DiffAugment for unconditional generation on the 100-shot datasets, CIFAR, FFHQ, or LSUN, please refer to the DiffAugment-stylegan2 README or DiffAugment-stylegan2-pytorch for the PyTorch version.

DiffAugment for BigGAN

Please refer to the DiffAugment-biggan-cifar README to run BigGAN + DiffAugment for conditional generation on CIFAR (using GPUs), and the DiffAugment-biggan-imagenet README to run on ImageNet (using TPUs).

Using DiffAugment for Your Own Training

To help you use DiffAugment in your own codebase, we provide portable DiffAugment operations of both TensorFlow and PyTorch versions in DiffAugment_tf.py and DiffAugment_pytorch.py. Generally, DiffAugment can be easily adopted in any model by substituting every D(x) with D(T(x)), where x can be real images or fake images, D is the discriminator, and T is the DiffAugment operation. For example,

from DiffAugment_pytorch import DiffAugment
# from DiffAugment_tf import DiffAugment
policy = 'color,translation,cutout' # If your dataset is as small as ours (e.g.,
# hundreds of images), we recommend using the strongest Color + Translation + Cutout.
# For large datasets, try using a subset of transformations in ['color', 'translation', 'cutout'].
# Welcome to discover more DiffAugment transformations!

...
# Training loop: update D
reals = sample_real_images() # a batch of real images
z = sample_latent_vectors()
fakes = Generator(z) # a batch of fake images
real_scores = Discriminator(DiffAugment(reals, policy=policy))
fake_scores = Discriminator(DiffAugment(fakes, policy=policy))
# Calculating D's loss based on real_scores and fake_scores...
...

...
# Training loop: update G
z = sample_latent_vectors()
fakes = Generator(z) # a batch of fake images
fake_scores = Discriminator(DiffAugment(fakes, policy=policy))
# Calculating G's loss based on fake_scores...
...

We have implemented Color, Translation, and Cutout DiffAugment as visualized below:

Citation

If you find this code helpful, please cite our paper:

@inproceedings{zhao2020diffaugment,
  title={Differentiable Augmentation for Data-Efficient GAN Training},
  author={Zhao, Shengyu and Liu, Zhijian and Lin, Ji and Zhu, Jun-Yan and Han, Song},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

Acknowledgements

We thank NSF Career Award #1943349, MIT-IBM Watson AI Lab, Google, Adobe, and Sony for supporting this research. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). We thank William S. Peebles and Yijun Li for helpful comments.

Owner
MIT HAN Lab
Accelerating Deep Learning Computing
MIT HAN Lab
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022