Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Related tags

Deep LearningViSha
Overview

Triple-cooperative Video Shadow Detection

Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official link].
by Zhihao Chen1, Liang Wan1, Lei Zhu2, Jia Shen1, Huazhu Fu3, Wennan Liu4, and Jing Qin5
1College of Intelligence and Computing, Tianjin University
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge
3Inception Institute of Artificial Intelligence, UAE
4Academy of Medical Engineering and Translational Medicine, Tianjin University
5The Hong Kong Polytechnic University

News: In 2021.4.7, We first release the code of TVSD and ViSha dataset.


Citation

@inproceedings{chen21TVSD,
     author = {Chen, Zhihao and Wan, Liang and Zhu, Lei and Shen, Jia and Fu, Huazhu and Liu, Wennan and Qin, Jing},
     title = {Triple-cooperative Video Shadow Detection},
     booktitle = {CVPR},
     year = {2021}
}

Dataset

ViSha dataset is available at ViSha Homepage

Requirement

  • Python 3.6
  • PyTorch 1.3.1
  • torchvision
  • numpy
  • tqdm
  • PIL
  • math
  • time
  • datatime
  • argparse
  • apex (alternative, fp16 for save memory and speedup)

Training

  1. Modify the data path on ./config.py
  2. Modify the pretrained backbone path on ./networks/resnext_modify/config.py
  3. Run by python train.py and model will be saved in ./models/TVSD

The pretrained ResNeXt model is ported from the official torch version, using the convertor provided by clcarwin. You can directly download the pretrained model ported by us.

Testing

  1. Modify the data path on ./config.py
  2. Make sure you have a snapshot in ./models/TVSD (Tips: You can download the trained model which is reported in our paper at BaiduNetdisk(pw: 8p5h) or Google Drive)
  3. Run by python infer.py to generate predicted masks
  4. Run by python evaluate.py to evaluate the generated results

Results in ViSha testing set

As mentioned in our paper, since there is no CNN-based method for video shadow detection, we make comparison against 12 state-of-the-art methods for relevant tasks, including BDRAR[1], DSD[2], MTMT[3] (single-image shadow detection), FPN[4], PSPNet[5] (single-image semantic segmentation), DSS[6], R^3 Net[7] (single-image saliency detection), PDBM[8], MAG[9] (video saliency detection), COSNet[10], FEELVOS[11], STM[12] (object object segmentation)
[1]L. Zhu, Z. Deng, X. Hu, C.-W. Fu, X. Xu, J. Qin, and P.-A. Heng. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In ECCV, pages 121–136, 2018.
[2]Q. Zheng, X. Qiao, Y. Cao, and R.W. Lau. Distraction-aware shadow detection. In CVPR, pages 5167–5176, 2019.
[3]Z. Chen, L. Zhu, L. Wan, S. Wang, W. Feng, and P.-A. Heng. A multi-task mean teacher for semi-supervised shadow detection. In CVPR, pages 5611–5620, 2020.
[4]T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, and S.Belongie. Feature pyramid networks for object detection. In CVPR, pages 2117–2125, 2017.
[5]H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In CVPR, pages 2881–2890, 2017.
[6]Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr. Deeply supervised salient object detection with short connections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4):815–828, 2019.
[7]Z. Deng, X. Hu, L. Zhu, X. Xu, J. Qin, G. Han, and P.-A. Heng. R3net: Recurrent residual refinement network for saliency detection. In IJCAI, pages 684–690. AAAI Press, 2018.
[8]H. Song, W. Wang, S. Zhao, J. Shen, and K.-M. Lam. Pyramid dilated deeper convlstm for video salient object detection. In ECCV, pages 715–731, 2018.
[9]H. Li, G. Chen, G. Li, and Y. Yu. Motion guided attention for video salient object detection. In ICCV, pages 7274–7283, 2019.
[10]X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli. See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In CVPR, pages 3623–3632, 2019.
[11]P. Voigtlaender, Y. Chai, F. Schroff, H. Adam, B. Leibe, and L.-C. Chen. Feelvos: Fast end-to-end embedding learning for video object segmentation. In CVPR, June 2019.
[12]S.W. Oh, J.-Y. Lee, N. Xu, and S.J. Kim. Video object segmentation using space-time memory networks. In ICCV, pages 9226–9235, 2019.

We evaluate those methods and our TVSD in ViSha testing set and release all results in BaiduNetdisk(pw: ritw) or Google Drive

Owner
Zhihao Chen
Zhihao Chen
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022