Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

Overview

OCR Ground Truth for Historical Commentaries

DOI License: CC BY 4.0

The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public domain subset of scholarly commentaries on Sophocles' Ajax. Its main goal is to enable the evaluation of the OCR quality on printed materials that contain a mix of Latin and polytonic Greek scripts. It consists of five 19C commentaries written in German, English, and Latin, for a total of 3,356 GT lines.

Data

GT4HistComment are contained in data/, where each sub-folder corresponds to a different publication (i.e. commentary). For each each commentary we provide the following data:

  • <commentary_id>/GT-pairs: pairs of image/text files for each GT line
  • <commentary_id>/imgs: original images on which the OCR was performed
  • <commentary_id>/<commentary_id>_olr.tsv: OLR annotations with image region coordinates and layout type ground truth label

The OCR output produced by the Kraken + Ciaconna pipeline was manually corrected by a pool of annotators using the Lace platform. In order to ensure the quality of the ground truth datasets, an additional verification of all transcriptions made in Lace was carried out by an annotator on line-by-line pairs of image and corresponding text.

Commentary overview

ID Commentator Year Languages Image source Line example
bsb10234118 Lobeck [1] 1835 Greek, Latin BSB
sophokle1v3soph Schneidewin [2] 1853 Greek, German Internet Archive
cu31924087948174 Campbell [3] 1881 Greek, English Internet Archive
sophoclesplaysa05campgoog Jebb [4] 1896 Greek, English Internet Archive
Wecklein1894 Wecklein [5] 1894 [5] Greek. German internal

Stats

Line, word and char counts for each commentary are indicated in the following table. Detailled counts for each region can be found here.

ID Commentator Type lines words all chars greek chars
bsb10234118 Lobeck training 574 2943 16081 5344
bsb10234118 Lobeck groundtruth 202 1491 7917 2786
sophokle1v3soph Schneidewin training 583 2970 16112 3269
sophokle1v3soph Schneidewin groundtruth 382 1599 8436 2191
cu31924087948174 Campbell groundtruth 464 2987 14291 3566
sophoclesplaysa05campgoog Jebb training 561 4102 19141 5314
sophoclesplaysa05campgoog Jebb groundtruth 324 2418 10986 2805
Wecklein1894 Wecklein groundtruth 211 1912 9556 3268

Commentary editions used:

  • [1] Lobeck, Christian August. 1835. Sophoclis Aiax. Leipzig: Weidmann.
  • [2] Sophokles. 1853. Sophokles Erklaert von F. W. Schneidewin. Erstes Baendchen: Aias. Philoktetes. Edited by Friedrich Wilhelm Schneidewin. Leipzig: Weidmann.
  • [3] Lewis Campbell. 1881. Sophocles. Oxford : Clarendon Press.
  • [4] Wecklein, Nikolaus. 1894. Sophokleus Aias. München: Lindauer.
  • [5] Jebb, Richard Claverhouse. 1896. Sophocles: The Plays and Fragments. London: Cambridge University Press.

Citation

If you use this dataset in your research, please cite the following publication:

@inproceedings{romanello_optical_2021,
  title = {Optical {{Character Recognition}} of 19th {{Century Classical Commentaries}}: The {{Current State}} of {{Affairs}}},
  booktitle = {The 6th {{International Workshop}} on {{Historical Document Imaging}} and {{Processing}} ({{HIP}} '21)},
  author = {Romanello, Matteo and Sven, Najem-Meyer and Robertson, Bruce},
  year = {2021},
  publisher = {{Association for Computing Machinery}},
  address = {{Lausanne}},
  doi = {10.1145/3476887.3476911}
}

Acknowledgements

Data in this repository were produced in the context of the Ajax Multi-Commentary project, funded by the Swiss National Science Foundation under an Ambizione grant PZ00P1_186033.

Contributors: Carla Amaya (UNIL), Sven Najem-Meyer (EPFL), Matteo Romanello (UNIL), Bruce Robertson (Mount Allison University).

You might also like...
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Comments
  • adds line-, word- and char-counts to README.md

    adds line-, word- and char-counts to README.md

    Adds a table to README.md as suggested by reviewer 1. The table also link to a more complete table, itself a public version of spreadsheet OCR evaluation and stats!detailed_counts. Note that the publishable version is an external reference to our private version, meaning that actualising the latter will also update the former.

    opened by sven-nm 0
  • Pages à exclure - OCR

    Pages à exclure - OCR

    La page contient les schémas métriques des passages. De ce fait l'OCR ne les reconnaît pas, de plus la correction de l'OCR n'a pas été achevée.

    Voici les pages à exclure : sophoclesplaysa05campgoog_0072.png (Jebb, p. 72)

    opened by camaya28 0
Releases(v1.0)
Owner
Ajax Multi-Commentary
How does a classical hero die in the digital age? Using Sophocles’ Ajax to create a commentary on commentaries.
Ajax Multi-Commentary
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022