On the model-based stochastic value gradient for continuous reinforcement learning

Related tags

Deep Learningsvg
Overview

On the model-based stochastic value gradient for continuous reinforcement learning

This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson and contains the PyTorch source code to reproduce the experiments in our L4DC 2021 paper On model-based stochastic value gradient for continuous reinforcement learning. Videos of our agents are available here.

Setup and dependencies

After cloning this repository and installing PyTorch on your system, you can set up the code with:

python3 setup.py develop

A basic run and analysis

You can start a single local run on the humanoid with:

./train.py env=mbpo_humanoid

This will create an experiment directory in exp/local/<date>/ with models and logging info. Once that has saved out the first model, you can plot a video of the agent with some diagnostic information with the command:

./eval-vis-model.py exp/local/2021.05.07

Reproducing our main experimental results

We have the default hyper-parameters in this repo set to the best ones we found with a hyper-parameter search. The following command reproduces our final results using 10 seeds with the optimal hyper-parameter:

./train.py -m experiment=mbpo_final env=mbpo_cheetah,mbpo_hopper,mbpo_walker2d,mbpo_humanoid,mbpo_ant seed=$(seq -s, 10)

The results from this experiment can be plotted with our notebook nbs/mbpo.ipynb, which can also serve as a starting point for analyzing and developing further methods.

Reproducing our sweeps and ablations

Our main hyper-parameter sweeps are run with hydra's multi-tasking mode and can be launched with the following command after uncommenting the hydra/sweeper line in config/train.yaml:

./train.py -m experiment=full_poplin_sweep

The results from this experiment can be plotted with our notebook nbs/poplin.ipynb.

Citations

If you find this repository helpful for your publications, please consider citing our paper:

@inproceedings{amos2021svg,
  title={On the model-based stochastic value gradient for continuous reinforcement learning},
  author={Amos, Brandon and Stanton, Samuel and Yarats, Denis and Wilson, Andrew Gordon},
  booktitle={L4DC},
  year={2021}
}

Licensing

This repository is licensed under the CC BY-NC 4.0 License.

Owner
Facebook Research
Facebook Research
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022