AirCode: A Robust Object Encoding Method

Overview

AirCode

This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method"

Demo

Object matching comparison when the objects are non-rigid and the view is changed, left is the result of our method while right is the result of NetVLAD

Relocalization on KITTI datasets

Dependencies

  • Python
  • PyTorch
  • OpenCV
  • Matplotlib
  • NumPy
  • Yaml

Data

Four datasets are used in our experiments.

KITTI Odometry

For relocalization experiment. Three sequences are selected, and they are "00", "05" and "06".

KITTI Tracking

For multi-object matching experiment. Four sequences are selected, and they are "0002", "0003", "0006", "0010".

VOT Datasets

For single-object matching experiment. We select three sequences from VOT2019 datasets and they are "bluecar", "bus6" and "humans_corridor_occ_2_A", because the tracked objects in these sequences are included in coco datasets, which are the data we used to train mask-rcnn.

OTB Datasets

For single-object matching experiment. We select five sequences and they are "BlurBody", "BlurCar2", "Human2", "Human7" and "Liquor".

Examples

Relocalization on KITTI Datasets

  1. Extract object descrptors

    python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_MIDDLE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS
    
  2. Compute precision-recall curves

    python experiments/place_recogination/offline_process.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    
  3. Compute top-K relocalization results

    python experiments/place_recogination/offline_topK.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    

Object Matching on OTB, VOT or KITTI Tracking Datasets

  • Run multi-object matching experiment in KITTI Tracking Datasets Modify the config file and run

    python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
  • Run single-object matching experiment in OTB or VOT Datasets Modify the config file and run

    python experiments/object_tracking/single_object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
You might also like...
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

 Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Code release for our paper,
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Comments
  • how can I get *.pth files?

    how can I get *.pth files?

    Hello, I am a beginner. When I run python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s results/ -d /media/jixingwu/datasetj/KITTI/Odom/data_odometry_color/sequences -m models/, points_model.pth file is needed. So how can I get it? Thank you!

    opened by jixingwu 5
  • Unable to load model under CPU-only configuration

    Unable to load model under CPU-only configuration

    Hi, I want to run object tracking on KITTI tracking datasets with only CPU using the following terminal prompt:

      python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    

    with configuration in object_tracking.py updated with

    configs['use_gpu'] = 0
    

    However, when running with the configuration above with gcn_model.pth, maskrcnn_model.pth, points_model.pth model files in release v2.0.0, the following error occurs:

    (aircode) [email protected]:~/workspace/AirCode$ python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    experiments/object_tracking/object_tracking.py:371: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
      configs = yaml.load(configs)
    Traceback (most recent call last):
      File "experiments/object_tracking/object_tracking.py", line 384, in <module>
        main()
      File "experiments/object_tracking/object_tracking.py", line 381, in main
        show_object_tracking(configs)
      File "experiments/object_tracking/object_tracking.py", line 272, in show_object_tracking
        superpoint_model = build_superpoint_model(configs, requires_grad=False)
      File "./model/build_model.py", line 101, in build_superpoint_model
        model.load_state_dict(model_dict)
      File "/home/yutianc/minicondas/envs/aircode/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1052, in load_state_dict
        self.__class__.__name__, "\n\t".join(error_msgs)))
    RuntimeError: Error(s) in loading state_dict for VggLike:
            Unexpected key(s) in state_dict: "module.pretrained_net.features.0.weight", "module.pretrained_net.features.0.bias", "module.pretrained_net.features.2.weight", "module.pretrained_net.features.2.bias", "module.pretrained_net.features.5.weight", "module.pretrained_net.features.5.bias", "module.pretrained_net.features.7.weight", "module.pretrained_net.features.7.bias", "module.pretrained_net.features.10.weight", "module.pretrained_net.features.10.bias", "module.pretrained_net.features.12.weight", "module.pretrained_net.features.12.bias", "module.pretrained_net.features.14.weight", "module.pretrained_net.features.14.bias", "module.pretrained_net.features.17.weight", "module.pretrained_net.features.17.bias", "module.pretrained_net.features.19.weight", "module.pretrained_net.features.19.bias", "module.pretrained_net.features.21.weight", "module.pretrained_net.features.21.bias", "module.pretrained_net.features.24.weight", "module.pretrained_net.features.24.bias", "module.pretrained_net.features.26.weight", "module.pretrained_net.features.26.bias", "module.pretrained_net.features.28.weight", "module.pretrained_net.features.28.bias", "module.convPa.weight", "module.convPa.bias", "module.bnPa.weight", "module.bnPa.bias", "module.bnPa.running_mean", "module.bnPa.running_var", "module.bnPa.num_batches_tracked", "module.convPb.weight", "module.convPb.bias", "module.bnPb.weight", "module.bnPb.bias", "module.bnPb.running_mean", "module.bnPb.running_var", "module.bnPb.num_batches_tracked", "module.convDa.weight", "module.convDa.bias", "module.bnDa.weight", "module.bnDa.bias", "module.bnDa.running_mean", "module.bnDa.running_var", "module.bnDa.num_batches_tracked", "module.convDb.weight", "module.convDb.bias", "module.bnDb.weight", "module.bnDb.bias", "module.bnDb.running_mean", "module.bnDb.running_var", "module.bnDb.num_batches_tracked".
    

    Running object_tracking.py with CUDA seems to load models successfully. Is there something wrong with the model loading when GPU is disabled?

    opened by MarkChenYutian 4
  • Why RGB image is converted into grayscale image with 3 channels?

    Why RGB image is converted into grayscale image with 3 channels?

    Hi, I'm trying to use AirCode to do object matching on complete KITTI sequences and I'm reading the code in experiments/show_object_matching.py.

    While reading the code, I noticed that the current code is reading RGB image sequence, convert it into grayscale image, and then duplicate the image into 3-channel each with same value (as following):

    https://github.com/wang-chen/AirCode/blob/5e23e9f5322d2e4ee119d5326a6b6112cef0e6bd/experiments/show_object_matching/show_object_matching.py#L172-L176

    I'm a bit unsure about the reason why this operation is performed here as the original RGB image should contain more information about the object comparing to grayscale image. For instance, it should be easier to distinguish objects with different color but similar shape if the RGB value is preserved.

    opened by MarkChenYutian 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022