Starter kit for getting started in the Music Demixing Challenge.

Overview

Airborne Banner

Music Demixing Challenge - Starter Kit

๐Ÿ‘‰ Challenge page

Discord

This repository is the Music Demixing Challenge Submission template and Starter kit!

Clone the repository to compete now!

This repository contains:

  • Documentation on how to submit your models to the leaderboard
  • The procedure for best practices and information on how we evaluate your agent, etc.
  • Starter code for you to get started!

Table of Contents

  1. Competition Procedure
  2. How to access and use dataset
  3. How to start participating
  4. How do I specify my software runtime / dependencies?
  5. What should my code structure be like ?
  6. How to make submission
  7. Other concepts
  8. Important links

Competition Procedure

The Music Demixing (MDX) Challenge is an opportunity for researchers and machine learning enthusiasts to test their skills by creating a system able to perform audio source separation.

In this challenge, you will train your models locally and then upload them to AIcrowd (via git) to be evaluated.

The following is a high level description of how this process works

  1. Sign up to join the competition on the AIcrowd website.
  2. Clone this repo and start developing your solution.
  3. Train your models for audio seperation and write prediction code in test.py.
  4. Submit your trained models to AIcrowd Gitlab for evaluation (full instructions below). The automated evaluation setup will evaluate the submissions against the test dataset to compute and report the metrics on the leaderboard of the competition.

How to access and use the dataset

You are allowed to train your system either exclusively on the training part of MUSDB18-HQ dataset or you can use your choice of data. According to the dataset used, you will be eligible for different leaderboards.

๐Ÿ‘‰ Download MUSDB18-HQ dataset

In case you are using external dataset, please mention it in your aicrowd.json.

{
  [...],
  "external_dataset_used": true
}

The MUSDB18 dataset contains 150 songs (100 songs in train and 50 songs in test) together with their seperations in the following manner:

|
โ”œโ”€โ”€ train
โ”‚   โ”œโ”€โ”€ A Classic Education - NightOwl
โ”‚   โ”‚   โ”œโ”€โ”€ bass.wav
โ”‚   โ”‚   โ”œโ”€โ”€ drums.wav
โ”‚   โ”‚   โ”œโ”€โ”€ mixture.wav
โ”‚   โ”‚   โ”œโ”€โ”€ other.wav
โ”‚   โ”‚   โ””โ”€โ”€ vocals.wav
โ”‚   โ””โ”€โ”€ ANiMAL - Clinic A
โ”‚       โ”œโ”€โ”€ bass.wav
โ”‚       โ”œโ”€โ”€ drums.wav
โ”‚       โ”œโ”€โ”€ mixture.wav
โ”‚       โ”œโ”€โ”€ other.wav
โ”‚       โ””โ”€โ”€ vocals.wav
[...]

Here the mixture.wav file is the original music on which you need to do audio source seperation.
While bass.wav, drums.wav, other.wav and vocals.wav contain files for your training purposes.
Please note again: To be eligible for Leaderboard A, you are only allowed to train on the songs in train.

How to start participating

Setup

  1. Add your SSH key to AIcrowd GitLab

You can add your SSH Keys to your GitLab account by going to your profile settings here. If you do not have SSH Keys, you will first need to generate one.

  1. Clone the repository

    git clone [email protected]:AIcrowd/music-demixing-challenge-starter-kit.git
    
  2. Install competition specific dependencies!

    cd music-demixing-challenge-starter-kit
    pip3 install -r requirements.txt
    
  3. Try out random prediction codebase present in test.py.

How do I specify my software runtime / dependencies ?

We accept submissions with custom runtime, so you don't need to worry about which libraries or framework to pick from.

The configuration files typically include requirements.txt (pypi packages), environment.yml (conda environment), apt.txt (apt packages) or even your own Dockerfile.

You can check detailed information about the same in the ๐Ÿ‘‰ RUNTIME.md file.

What should my code structure be like ?

Please follow the example structure as it is in the starter kit for the code structure. The different files and directories have following meaning:

.
โ”œโ”€โ”€ aicrowd.json           # Submission meta information - like your username
โ”œโ”€โ”€ apt.txt                # Packages to be installed inside docker image
โ”œโ”€โ”€ data                   # Your local dataset copy - you don't need to upload it (read DATASET.md)
โ”œโ”€โ”€ requirements.txt       # Python packages to be installed
โ”œโ”€โ”€ test.py                # IMPORTANT: Your testing/prediction code, must be derived from MusicDemixingPredictor (example in test.py)
โ””โ”€โ”€ utility                # The utility scripts to provide smoother experience to you.
    โ”œโ”€โ”€ docker_build.sh
    โ”œโ”€โ”€ docker_run.sh
    โ”œโ”€โ”€ environ.sh
    โ””โ”€โ”€ verify_or_download_data.sh

Finally, you must specify an AIcrowd submission JSON in aicrowd.json to be scored!

The aicrowd.json of each submission should contain the following content:

{
  "challenge_id": "evaluations-api-music-demixing",
  "authors": ["your-aicrowd-username"],
  "description": "(optional) description about your awesome agent",
  "external_dataset_used": false
}

This JSON is used to map your submission to the challenge - so please remember to use the correct challenge_id as specified above.

How to make submission

๐Ÿ‘‰ SUBMISSION.md

Best of Luck ๐ŸŽ‰ ๐ŸŽ‰

Other Concepts

Time constraints

You need to make sure that your model can do audio seperation for each song within 4 minutes, otherwise the submission will be marked as failed.

Local Run

๐Ÿ‘‰ LOCAL_RUN.md

Contributing

๐Ÿ™ You can share your solutions or any other baselines by contributing directly to this repository by opening merge request.

  • Add your implemntation as test_<approach-name>.py
  • Test it out using python test_<approach-name>.py
  • Add any documentation for your approach at top of your file.
  • Import it in predict.py
  • Create merge request! ๐ŸŽ‰ ๐ŸŽ‰ ๐ŸŽ‰

Contributors

๐Ÿ“Ž Important links

๐Ÿ’ช  Challenge Page: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021

๐Ÿ—ฃ๏ธ  Discussion Forum: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021/discussion

๐Ÿ†  Leaderboard: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021/leaderboards

Owner
AIcrowd
AIcrowd
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
ๅˆฉ็”จTensorflowๅฎž็ŽฐๅŸบไบŽCNN็š„ไธญๆ–‡็Ÿญๆ–‡ๆœฌๅˆ†็ฑป

Text Classification with CNN ไฝฟ็”จๅท็งฏ็ฅž็ป็ฝ‘็ปœ่ฟ›่กŒไธญๆ–‡ๆ–‡ๆœฌๅˆ†็ฑป CNNๅšๅฅๅญๅˆ†็ฑป็š„่ฎบๆ–‡ๅฏไปฅๅ‚็œ‹: Convolutional Neural Networks for Sentence Classification ่ฟ˜ๅฏไปฅๅŽป่ฏปdennybritzๅคง็‰›็š„ๅšๅฎข๏ผšImplemen

Jeremiah 4 Nov 08, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Code for testing convergence rates of Lipschitz learning on graphs

๐Ÿ“ˆ LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021