Starter kit for getting started in the Music Demixing Challenge.

Overview

Airborne Banner

Music Demixing Challenge - Starter Kit

๐Ÿ‘‰ Challenge page

Discord

This repository is the Music Demixing Challenge Submission template and Starter kit!

Clone the repository to compete now!

This repository contains:

  • Documentation on how to submit your models to the leaderboard
  • The procedure for best practices and information on how we evaluate your agent, etc.
  • Starter code for you to get started!

Table of Contents

  1. Competition Procedure
  2. How to access and use dataset
  3. How to start participating
  4. How do I specify my software runtime / dependencies?
  5. What should my code structure be like ?
  6. How to make submission
  7. Other concepts
  8. Important links

Competition Procedure

The Music Demixing (MDX) Challenge is an opportunity for researchers and machine learning enthusiasts to test their skills by creating a system able to perform audio source separation.

In this challenge, you will train your models locally and then upload them to AIcrowd (via git) to be evaluated.

The following is a high level description of how this process works

  1. Sign up to join the competition on the AIcrowd website.
  2. Clone this repo and start developing your solution.
  3. Train your models for audio seperation and write prediction code in test.py.
  4. Submit your trained models to AIcrowd Gitlab for evaluation (full instructions below). The automated evaluation setup will evaluate the submissions against the test dataset to compute and report the metrics on the leaderboard of the competition.

How to access and use the dataset

You are allowed to train your system either exclusively on the training part of MUSDB18-HQ dataset or you can use your choice of data. According to the dataset used, you will be eligible for different leaderboards.

๐Ÿ‘‰ Download MUSDB18-HQ dataset

In case you are using external dataset, please mention it in your aicrowd.json.

{
  [...],
  "external_dataset_used": true
}

The MUSDB18 dataset contains 150 songs (100 songs in train and 50 songs in test) together with their seperations in the following manner:

|
โ”œโ”€โ”€ train
โ”‚   โ”œโ”€โ”€ A Classic Education - NightOwl
โ”‚   โ”‚   โ”œโ”€โ”€ bass.wav
โ”‚   โ”‚   โ”œโ”€โ”€ drums.wav
โ”‚   โ”‚   โ”œโ”€โ”€ mixture.wav
โ”‚   โ”‚   โ”œโ”€โ”€ other.wav
โ”‚   โ”‚   โ””โ”€โ”€ vocals.wav
โ”‚   โ””โ”€โ”€ ANiMAL - Clinic A
โ”‚       โ”œโ”€โ”€ bass.wav
โ”‚       โ”œโ”€โ”€ drums.wav
โ”‚       โ”œโ”€โ”€ mixture.wav
โ”‚       โ”œโ”€โ”€ other.wav
โ”‚       โ””โ”€โ”€ vocals.wav
[...]

Here the mixture.wav file is the original music on which you need to do audio source seperation.
While bass.wav, drums.wav, other.wav and vocals.wav contain files for your training purposes.
Please note again: To be eligible for Leaderboard A, you are only allowed to train on the songs in train.

How to start participating

Setup

  1. Add your SSH key to AIcrowd GitLab

You can add your SSH Keys to your GitLab account by going to your profile settings here. If you do not have SSH Keys, you will first need to generate one.

  1. Clone the repository

    git clone [email protected]:AIcrowd/music-demixing-challenge-starter-kit.git
    
  2. Install competition specific dependencies!

    cd music-demixing-challenge-starter-kit
    pip3 install -r requirements.txt
    
  3. Try out random prediction codebase present in test.py.

How do I specify my software runtime / dependencies ?

We accept submissions with custom runtime, so you don't need to worry about which libraries or framework to pick from.

The configuration files typically include requirements.txt (pypi packages), environment.yml (conda environment), apt.txt (apt packages) or even your own Dockerfile.

You can check detailed information about the same in the ๐Ÿ‘‰ RUNTIME.md file.

What should my code structure be like ?

Please follow the example structure as it is in the starter kit for the code structure. The different files and directories have following meaning:

.
โ”œโ”€โ”€ aicrowd.json           # Submission meta information - like your username
โ”œโ”€โ”€ apt.txt                # Packages to be installed inside docker image
โ”œโ”€โ”€ data                   # Your local dataset copy - you don't need to upload it (read DATASET.md)
โ”œโ”€โ”€ requirements.txt       # Python packages to be installed
โ”œโ”€โ”€ test.py                # IMPORTANT: Your testing/prediction code, must be derived from MusicDemixingPredictor (example in test.py)
โ””โ”€โ”€ utility                # The utility scripts to provide smoother experience to you.
    โ”œโ”€โ”€ docker_build.sh
    โ”œโ”€โ”€ docker_run.sh
    โ”œโ”€โ”€ environ.sh
    โ””โ”€โ”€ verify_or_download_data.sh

Finally, you must specify an AIcrowd submission JSON in aicrowd.json to be scored!

The aicrowd.json of each submission should contain the following content:

{
  "challenge_id": "evaluations-api-music-demixing",
  "authors": ["your-aicrowd-username"],
  "description": "(optional) description about your awesome agent",
  "external_dataset_used": false
}

This JSON is used to map your submission to the challenge - so please remember to use the correct challenge_id as specified above.

How to make submission

๐Ÿ‘‰ SUBMISSION.md

Best of Luck ๐ŸŽ‰ ๐ŸŽ‰

Other Concepts

Time constraints

You need to make sure that your model can do audio seperation for each song within 4 minutes, otherwise the submission will be marked as failed.

Local Run

๐Ÿ‘‰ LOCAL_RUN.md

Contributing

๐Ÿ™ You can share your solutions or any other baselines by contributing directly to this repository by opening merge request.

  • Add your implemntation as test_<approach-name>.py
  • Test it out using python test_<approach-name>.py
  • Add any documentation for your approach at top of your file.
  • Import it in predict.py
  • Create merge request! ๐ŸŽ‰ ๐ŸŽ‰ ๐ŸŽ‰

Contributors

๐Ÿ“Ž Important links

๐Ÿ’ช  Challenge Page: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021

๐Ÿ—ฃ๏ธ  Discussion Forum: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021/discussion

๐Ÿ†  Leaderboard: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021/leaderboards

Owner
AIcrowd
AIcrowd
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | ็ฎ€ไฝ“ไธญๆ–‡ MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladรฉs 2 Dec 29, 2021
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022