Plotting points that lie on the intersection of the given curves using gradient descent.

Overview

Plotting intersection of curves using gradient descent

Webapp Link ---> Streamlit App

What's the app about Why this app
Plotting functions and their intersection. An interesting application of gradient descent.
I'm a fan of plotting graphs (and visualizations in general).

Let's say you are giving equations of curves and you need to plot the intersection of these curves. As an example, say you have 2 spheres (3D), how would you plot the intersection of the given spheres?

... x, a & b are vectors of size 3.

My first approach to this problem was finding the equation of intersection of these 2 functions by equating them i.e. F_1(x) = F_2(x). Then trying to simplify the equation and use that equation to plot the points. This approach is not feasible for 2 reasons:

  1. Equating the 2 functions won't necessarily give you the equation of intersection. For instance, equating 2 equations of spheres will give you intersection plane of the spheres and not the equation of intersecting circle (if any).
  2. Even if you had an equation, the question still remains, how to plot points from a given equation?

If you observe, points that lie on the intersection of the curves should satisfy all the functions separately i.e.

So, another approach (highly ineffective) would be to generate points randomly everytime and see if they satisfy all the given equations. If it does, it is a valid 'point'. Else, generate another random point and repeat untill you have sufficient points. Downsides of this approach:

  1. The search space is too big. Even bigger for N-dimensional points.
  2. Highly ineffective approach. Might take forever to stumble upon such valid points.

Gradient Descent to the rescue

Can we modify the previous approach- Instead of discarding an invalid randomly generated point, can we update it iteratively so that it approaches a valid solution? If so, what would it mean to be a valid solution and when should we stop updating the sample?

What should be the criteria for a point x to be a valid solution?

If the point lies on the intersection of the curves, it should satisfy for all i i.e.

; &

We can define a function as the summation of the given functions to hold the above condition.

So, we can say that a point will be valid when it satisfies G(x) = 0, since it will only hold when all the F_i(x) are zero. This will be our criterion for checking if the point is a valid solution.

However, we are not yet done. The range of G(x) can be from . This means, the minimum value of G(x) is not necessarily 0. This is a problem because if we keep minimizing G(x) iteratively by updating x, the value of G(x) will cross 0 and approach a negative value (it's minima).

This could be solved if the minima of G(x) is 0 itself. This way we can keep updating x until G(x) approaches the minima (0 in this case). So, we need to do slight modification in G(x) such that its minimum value is 0.

My first instict was to define G(x) as the sum of absolute F_i(x) i.e.

The minimum value of this function will be 0 and will hold all the conditions discussed above. However, if we are trying to use Gradient Descent, using modulus operation can be problematic because the function may not remain smooth anymore.

So, what's an easy alternative for modulus operator which also holds the smoothness property? - Use squares!

This function can now be minimised to get the points of intersection of the curves.

  1. The function will be smooth and continuos. Provided F(x) are themselves smooth and continuous.
  2. The minimum value of G(x) is zero.
  3. The minimum value of G(x) represents the interesection of all F_i(x)
 Generate a random point x
 While G(x) != 0:
    x = x - lr * gradient(G(x))
    
 Repeat for N points.


Assumptions:

  1. Curves do intersect somewhere.
  2. The individual curves are themselves differentiable.
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022