Plotting points that lie on the intersection of the given curves using gradient descent.

Overview

Plotting intersection of curves using gradient descent

Webapp Link ---> Streamlit App

What's the app about Why this app
Plotting functions and their intersection. An interesting application of gradient descent.
I'm a fan of plotting graphs (and visualizations in general).

Let's say you are giving equations of curves and you need to plot the intersection of these curves. As an example, say you have 2 spheres (3D), how would you plot the intersection of the given spheres?

... x, a & b are vectors of size 3.

My first approach to this problem was finding the equation of intersection of these 2 functions by equating them i.e. F_1(x) = F_2(x). Then trying to simplify the equation and use that equation to plot the points. This approach is not feasible for 2 reasons:

  1. Equating the 2 functions won't necessarily give you the equation of intersection. For instance, equating 2 equations of spheres will give you intersection plane of the spheres and not the equation of intersecting circle (if any).
  2. Even if you had an equation, the question still remains, how to plot points from a given equation?

If you observe, points that lie on the intersection of the curves should satisfy all the functions separately i.e.

So, another approach (highly ineffective) would be to generate points randomly everytime and see if they satisfy all the given equations. If it does, it is a valid 'point'. Else, generate another random point and repeat untill you have sufficient points. Downsides of this approach:

  1. The search space is too big. Even bigger for N-dimensional points.
  2. Highly ineffective approach. Might take forever to stumble upon such valid points.

Gradient Descent to the rescue

Can we modify the previous approach- Instead of discarding an invalid randomly generated point, can we update it iteratively so that it approaches a valid solution? If so, what would it mean to be a valid solution and when should we stop updating the sample?

What should be the criteria for a point x to be a valid solution?

If the point lies on the intersection of the curves, it should satisfy for all i i.e.

; &

We can define a function as the summation of the given functions to hold the above condition.

So, we can say that a point will be valid when it satisfies G(x) = 0, since it will only hold when all the F_i(x) are zero. This will be our criterion for checking if the point is a valid solution.

However, we are not yet done. The range of G(x) can be from . This means, the minimum value of G(x) is not necessarily 0. This is a problem because if we keep minimizing G(x) iteratively by updating x, the value of G(x) will cross 0 and approach a negative value (it's minima).

This could be solved if the minima of G(x) is 0 itself. This way we can keep updating x until G(x) approaches the minima (0 in this case). So, we need to do slight modification in G(x) such that its minimum value is 0.

My first instict was to define G(x) as the sum of absolute F_i(x) i.e.

The minimum value of this function will be 0 and will hold all the conditions discussed above. However, if we are trying to use Gradient Descent, using modulus operation can be problematic because the function may not remain smooth anymore.

So, what's an easy alternative for modulus operator which also holds the smoothness property? - Use squares!

This function can now be minimised to get the points of intersection of the curves.

  1. The function will be smooth and continuos. Provided F(x) are themselves smooth and continuous.
  2. The minimum value of G(x) is zero.
  3. The minimum value of G(x) represents the interesection of all F_i(x)
 Generate a random point x
 While G(x) != 0:
    x = x - lr * gradient(G(x))
    
 Repeat for N points.


Assumptions:

  1. Curves do intersect somewhere.
  2. The individual curves are themselves differentiable.
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023