A diff tool for language models

Overview

LMdiff

Qualitative comparison of large language models.

Demo & Paper: http://lmdiff.net

LMdiff is a MIT-IBM Watson AI Lab collaboration between:
Hendrik Strobelt (IBM, MIT) , Benjamin Hoover (IBM, GeorgiaTech), Arvind Satyanarayan (MIT), and Sebastian Gehrmann (HarvardNLP, Google).

Setting up / Quick start

From the root directory install Conda dependencies:

conda env create -f environment.yml
conda activate LMdiff
pip install -e .

Run the backend in development mode, deploying default models and configurations:

uvicorn backend.server:app --reload

Check the output for the right port (something like http://localhost:8000) and open in Browser.

Rebuild frontend

This is optional, because we have a compiled version checked into this repo.

cd client
npm install
npm run build:backend
cd ..

Using your own models

To use your own models:

  1. Create a TextDataset of phrases to analyze

    You can create the dataset file in several ways:

    From a text file So you have already collected all the phrases you want into a text file separated by newlines. Simply run:
    python scripts/make_dataset.py path/to/my_dataset.txt my_dataset -o folder/i/want/to/save/in
    
    From a python object (list of strings) Want to only work within python?
    from analysis.create_dataset import create_text_dataset_from_object
    
    my_collection = ["Phrase 1", "My second phrase"]
    create_text_dataset_from_object(my_collection, "easy-first-dataset", "human_created", "folder/i/want/to/save/in")
    From [Huggingface Datasets](https://huggingface.co/docs/datasets/) It can be created from one of Huggingface's provided datasets with:
    from analysis.create_dataset import create_text_dataset_from_hf_datasets
    import datasets
    import path_fixes as pf
    
    glue_mrpc = datasets.load_dataset("glue", "mrpc", split="train")
    name = "glue_mrpc_train"
    
    def ds2str(glue):
        """(e.g.,) Turn the first 50 sentences of the dataset into sentence information"""
        sentences = glue['sentence1'][:50]
        return "\n".join(sentences)
    
    create_text_dataset_from_hf_datasets(glue_mrpc, name, ds2str, ds_type="human_created", outfpath=pf.DATASETS)

    The dataset is a simple .txt file, with a new phrase on every line, and with a bit of required metadata header at the top. E.g.,

    ---
    checksum: 92247a369d5da32a44497be822d4a90879807a8751f5db3ff1926adbeca7ba28
    name: dataset-dummy
    type: human_created
    ---
    
    This is sentence 1, please analyze this.
    Every line is a new phrase to pass to the model.
    I can keep adding phrases, so long as they are short enough to pass to the model. They don't even need to be one sentence long.
    

    The required fields in the header:

    • checksum :: A unique identifier for the state of that file. It can be calculated however you wish, but it should change if anything at all changes in the contents below (e.g., two phrases are transposed, a new phase added, or a period is added after a sentence)
    • name :: The name of the dataset.
    • type :: Either human_created or machine_generated if you want to compare on a dataset that was spit out by another model

    Each line in the contents is a new phrase to compare in the language model. A few warnings:

    • Make sure the phrases are short enough that they can be passed to the model given your memory constraints
    • The dataset is fully loaded into memory to serve to the front end, so avoid creating a text file that is too large to fit in memory.
  2. Choose two comparable models

    Two models are comparable if they:

    1. Have the exact same tokenization scheme
    2. Have the exact same vocabulary

    This allows us to do tokenwise comparisons on the model. For example, this could be:

    • A pretrained model and a finetuned version of it (e.g., distilbert-base-cased and distilbert-base-uncased-finetuned-sst-2-english)
    • A distilled version mimicking the original model (e.g., bert-base-cased and distilbert-base-cased)
    • Different sizes of the same model architecture (e.g., gpt2 and gpt2-large)
  3. Preprocess the models on the chosen dataset

    python scripts/preprocess.py all gpt2-medium distilgpt2 data/datasets/glue_mrpc_1+2.csv --output-dir data/sample/gpt2-glue-comparisons
    
  4. Start the app

    python backend/server/main.py --config data/sample/gpt2-glue-comparisons
    

    Note that if you use a different tokenization scheme than the default gpt, you will need to tell the frontend how to visualize the tokens. For example, a bert based tokenization scheme:

    python backend/server/main.py --config data/sample/bert-glue-comparisons -t bert
    

Architecture

LMdiff Architecture

(Admin) Getting the Data

Models and datasets for the deployed app are stored on the cloud and require a private .dvc/config file.

With the correct config:

dvc pull

will populate the data directories correctly for the deployed version.

Testing
make test

or

python -m pytest tests

All tests are stored in tests.

Frontend

We like pnpm but npm works just as well. We also like Vite for its rapid hot module reloading and pleasant dev experience. This repository uses Vue as a reactive framework.

From the root directory:

cd client
pnpm install --save-dev
pnpm run dev

If you want to hit the backend routes, make sure to also run the uvicorn backend.server:app command from the project root.

For production (serve with Vite)
pnpm run serve
For production (serve with this repo's FastAPI server)
cd client
pnpm run build:backend
cd ..
uvicorn backend.server:app

Or the gunicorn command from above.

All artifacts are stored in the client/dist directory with the appropriate basepath.

For production (serve with external tooling like NGINX)
pnpm run build

All artifacts are stored in the client/dist directory.

Notes

  • Check the endpoints by visiting <localhost>:<port>/docs
Owner
Hendrik Strobelt
IBM Research // MIT-IBM AI Lab Updates on Twitter: @hen_str
Hendrik Strobelt
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022