A diff tool for language models

Overview

LMdiff

Qualitative comparison of large language models.

Demo & Paper: http://lmdiff.net

LMdiff is a MIT-IBM Watson AI Lab collaboration between:
Hendrik Strobelt (IBM, MIT) , Benjamin Hoover (IBM, GeorgiaTech), Arvind Satyanarayan (MIT), and Sebastian Gehrmann (HarvardNLP, Google).

Setting up / Quick start

From the root directory install Conda dependencies:

conda env create -f environment.yml
conda activate LMdiff
pip install -e .

Run the backend in development mode, deploying default models and configurations:

uvicorn backend.server:app --reload

Check the output for the right port (something like http://localhost:8000) and open in Browser.

Rebuild frontend

This is optional, because we have a compiled version checked into this repo.

cd client
npm install
npm run build:backend
cd ..

Using your own models

To use your own models:

  1. Create a TextDataset of phrases to analyze

    You can create the dataset file in several ways:

    From a text file So you have already collected all the phrases you want into a text file separated by newlines. Simply run:
    python scripts/make_dataset.py path/to/my_dataset.txt my_dataset -o folder/i/want/to/save/in
    
    From a python object (list of strings) Want to only work within python?
    from analysis.create_dataset import create_text_dataset_from_object
    
    my_collection = ["Phrase 1", "My second phrase"]
    create_text_dataset_from_object(my_collection, "easy-first-dataset", "human_created", "folder/i/want/to/save/in")
    From [Huggingface Datasets](https://huggingface.co/docs/datasets/) It can be created from one of Huggingface's provided datasets with:
    from analysis.create_dataset import create_text_dataset_from_hf_datasets
    import datasets
    import path_fixes as pf
    
    glue_mrpc = datasets.load_dataset("glue", "mrpc", split="train")
    name = "glue_mrpc_train"
    
    def ds2str(glue):
        """(e.g.,) Turn the first 50 sentences of the dataset into sentence information"""
        sentences = glue['sentence1'][:50]
        return "\n".join(sentences)
    
    create_text_dataset_from_hf_datasets(glue_mrpc, name, ds2str, ds_type="human_created", outfpath=pf.DATASETS)

    The dataset is a simple .txt file, with a new phrase on every line, and with a bit of required metadata header at the top. E.g.,

    ---
    checksum: 92247a369d5da32a44497be822d4a90879807a8751f5db3ff1926adbeca7ba28
    name: dataset-dummy
    type: human_created
    ---
    
    This is sentence 1, please analyze this.
    Every line is a new phrase to pass to the model.
    I can keep adding phrases, so long as they are short enough to pass to the model. They don't even need to be one sentence long.
    

    The required fields in the header:

    • checksum :: A unique identifier for the state of that file. It can be calculated however you wish, but it should change if anything at all changes in the contents below (e.g., two phrases are transposed, a new phase added, or a period is added after a sentence)
    • name :: The name of the dataset.
    • type :: Either human_created or machine_generated if you want to compare on a dataset that was spit out by another model

    Each line in the contents is a new phrase to compare in the language model. A few warnings:

    • Make sure the phrases are short enough that they can be passed to the model given your memory constraints
    • The dataset is fully loaded into memory to serve to the front end, so avoid creating a text file that is too large to fit in memory.
  2. Choose two comparable models

    Two models are comparable if they:

    1. Have the exact same tokenization scheme
    2. Have the exact same vocabulary

    This allows us to do tokenwise comparisons on the model. For example, this could be:

    • A pretrained model and a finetuned version of it (e.g., distilbert-base-cased and distilbert-base-uncased-finetuned-sst-2-english)
    • A distilled version mimicking the original model (e.g., bert-base-cased and distilbert-base-cased)
    • Different sizes of the same model architecture (e.g., gpt2 and gpt2-large)
  3. Preprocess the models on the chosen dataset

    python scripts/preprocess.py all gpt2-medium distilgpt2 data/datasets/glue_mrpc_1+2.csv --output-dir data/sample/gpt2-glue-comparisons
    
  4. Start the app

    python backend/server/main.py --config data/sample/gpt2-glue-comparisons
    

    Note that if you use a different tokenization scheme than the default gpt, you will need to tell the frontend how to visualize the tokens. For example, a bert based tokenization scheme:

    python backend/server/main.py --config data/sample/bert-glue-comparisons -t bert
    

Architecture

LMdiff Architecture

(Admin) Getting the Data

Models and datasets for the deployed app are stored on the cloud and require a private .dvc/config file.

With the correct config:

dvc pull

will populate the data directories correctly for the deployed version.

Testing
make test

or

python -m pytest tests

All tests are stored in tests.

Frontend

We like pnpm but npm works just as well. We also like Vite for its rapid hot module reloading and pleasant dev experience. This repository uses Vue as a reactive framework.

From the root directory:

cd client
pnpm install --save-dev
pnpm run dev

If you want to hit the backend routes, make sure to also run the uvicorn backend.server:app command from the project root.

For production (serve with Vite)
pnpm run serve
For production (serve with this repo's FastAPI server)
cd client
pnpm run build:backend
cd ..
uvicorn backend.server:app

Or the gunicorn command from above.

All artifacts are stored in the client/dist directory with the appropriate basepath.

For production (serve with external tooling like NGINX)
pnpm run build

All artifacts are stored in the client/dist directory.

Notes

  • Check the endpoints by visiting <localhost>:<port>/docs
Owner
Hendrik Strobelt
IBM Research // MIT-IBM AI Lab Updates on Twitter: @hen_str
Hendrik Strobelt
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022