Image super-resolution through deep learning

Related tags

Deep Learningsrez
Overview

srez

Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images display sharp features that are plausible based on the dataset that was used to train the neural net.

Here's an random, non cherry-picked, example of what this network can do. From left to right, the first column is the 16x16 input image, the second one is what you would get from a standard bicubic interpolation, the third is the output generated by the neural net, and on the right is the ground truth.

Example output

As you can see, the network is able to produce a very plausible reconstruction of the original face. As the dataset is mainly composed of well-illuminated faces looking straight ahead, the reconstruction is poorer when the face is at an angle, poorly illuminated, or partially occluded by eyeglasses or hands.

This particular example was produced after training the network for 3 hours on a GTX 1080 GPU, equivalent to 130,000 batches or about 10 epochs.

How it works

In essence the architecture is a DCGAN where the input to the generator network is the 16x16 image rather than a multinomial gaussian distribution.

In addition to that the loss function of the generator has a term that measures the L1 difference between the 16x16 input and downscaled version of the image produced by the generator.

The adversarial term of the loss function ensures the generator produces plausible faces, while the L1 term ensures that those faces resemble the low-res input data. We have found that this L1 term greatly accelerates the convergence of the network during the first batches and also appears to prevent the generator from getting stuck in a poor local solution.

Finally, the generator network relies on ResNet modules as we've found them to train substantially faster than more old-fashioned architectures. The adversarial network is much simpler as the use of ResNet modules did not provide an advantage during our experimentation.

Requirements

You will need Python 3 with Tensorflow, numpy, scipy and moviepy. See requirements.txt for details.

Dataset

After you have the required software above you will also need the Large-scale CelebFaces Attributes (CelebA) Dataset. The model expects the Align&Cropped Images version. Extract all images to a subfolder named dataset. I.e. srez/dataset/lotsoffiles.jpg.

Training the model

Training with default settings: python3 srez_main.py --run train. The script will periodically output an example batch in PNG format onto the srez/train folder, and checkpoint data will be stored in the srez/checkpoint folder.

After the network has trained you can also produce an animation showing the evolution of the output by running python3 srez_main.py --run demo.

About the author

LinkedIn profile of David Garcia.

Owner
David Garcia
Software engineer specialized on GPU architecture and device drivers. A few billion smartphones have shipped with his work.
David Garcia
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022