Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Overview

Stylized Neural Painting

Open in RunwayML Badge

Preprint | Project Page | Colab Runtime 1 | Colab Runtime 2

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

We propose an image-to-painting translation method that generates vivid and realistic painting artworks with controllable styles. Different from previous image-to-image translation methods that formulate the translation as pixel-wise prediction, we deal with such an artistic creation process in a vectorized environment and produce a sequence of physically meaningful stroke parameters that can be further used for rendering. Since a typical vector render is not differentiable, we design a novel neural renderer which imitates the behavior of the vector renderer and then frame the stroke prediction as a parameter searching process that maximizes the similarity between the input and the rendering output. Experiments show that the paintings generated by our method have a high degree of fidelity in both global appearance and local textures. Our method can be also jointly optimized with neural style transfer that further transfers visual style from other images.

In this repository, we implement the complete training/inference pipeline of our paper based on Pytorch and provide several demos that can be used for reproducing the results reported in our paper. With the code, you can also try on your own data by following the instructions below.

The implementation of the sinkhorn loss in our code is partially adapted from the project SinkhornAutoDiff.

License

Creative Commons License Stylized Neural Painting by Zhengxia Zou is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

One-min video result

IMAGE ALT TEXT HERE

**Updates on CPU mode (Nov 29, 2020)

PyTorch-CPU mode is now supported! You can try out on your local machine without any GPU cards.

**Updates on lightweight renderers (Nov 26, 2020)

We have provided some lightweight renderers where users now can easily generate high resolution paintings with much more stroke details. With the lightweight renders, the rendering speed also improves a lot (x3 faster). This update also solves the out-of-memory problem when running our demo on a GPU card with limited memory (e.g. 4GB).

Please check out the following for more details.

Requirements

See Requirements.txt.

Setup

  1. Clone this repo:
git clone https://github.com/jiupinjia/stylized-neural-painting.git 
cd stylized-neural-painting
  1. Download one of the pretrained neural renderers from Google Drive (1. oil-paint brush, 2. watercolor ink, 3. marker pen, 4. color tapes), and unzip them to the repo directory.
unzip checkpoints_G_oilpaintbrush.zip
unzip checkpoints_G_rectangle.zip
unzip checkpoints_G_markerpen.zip
unzip checkpoints_G_watercolor.zip
  1. We have also provided some lightweight renderers where users can generate high-resolution paintings on their local machine with limited GPU memory. Please feel free to download and unzip them to your repo directory. (1. oil-paint brush (lightweight), 2. watercolor ink (lightweight), 3. marker pen (lightweight), 4. color tapes (lightweight)).
unzip checkpoints_G_oilpaintbrush_light.zip
unzip checkpoints_G_rectangle_light.zip
unzip checkpoints_G_markerpen_light.zip
unzip checkpoints_G_watercolor_light.zip

To produce our results

Photo to oil painting

  • Progressive rendering
python demo_prog.py --img_path ./test_images/apple.jpg --canvas_color 'white' --max_m_strokes 500 --max_divide 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --net_G zou-fusion-net
  • Progressive rendering with lightweight renderer (with lower GPU memory consumption and faster speed)
python demo_prog.py --img_path ./test_images/apple.jpg --canvas_color 'white' --max_m_strokes 500 --max_divide 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush_light --net_G zou-fusion-net-light
  • Rendering directly from mxm image grids
python demo.py --img_path ./test_images/apple.jpg --canvas_color 'white' --max_m_strokes 500 --m_grid 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --net_G zou-fusion-net

Photo to marker-pen painting

  • Progressive rendering
python demo_prog.py --img_path ./test_images/diamond.jpg --canvas_color 'black' --max_m_strokes 500 --max_divide 5 --renderer markerpen --renderer_checkpoint_dir checkpoints_G_markerpen --net_G zou-fusion-net
  • Progressive rendering with lightweight renderer (with lower GPU memory consumption and faster speed)
python demo_prog.py --img_path ./test_images/diamond.jpg --canvas_color 'black' --max_m_strokes 500 --max_divide 5 --renderer markerpen --renderer_checkpoint_dir checkpoints_G_markerpen_light --net_G zou-fusion-net-light
  • Rendering directly from mxm image grids
python demo.py --img_path ./test_images/diamond.jpg --canvas_color 'black' --max_m_strokes 500 --m_grid 5 --renderer markerpen --renderer_checkpoint_dir checkpoints_G_markerpen --net_G zou-fusion-net

Style transfer

  • First, you need to generate painting and save stroke parameters to output dir
python demo.py --img_path ./test_images/sunflowers.jpg --canvas_color 'white' --max_m_strokes 500 --m_grid 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --net_G zou-fusion-net --output_dir ./output
  • Then, choose a style image and run style transfer on the generated stroke parameters
python demo_nst.py --renderer oilpaintbrush --vector_file ./output/sunflowers_strokes.npz --style_img_path ./style_images/fire.jpg --content_img_path ./test_images/sunflowers.jpg --canvas_color 'white' --net_G zou-fusion-net --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --transfer_mode 1

You may also specify the --transfer_mode (0: transfer color only, 1: transfer both color and texture)

Also, please note that in the current version, the style transfer are not supported by the progressive rendering mode. We will be working on this feature in the near future.

Generate 8-bit graphic artworks

python demo_8bitart.py --img_path ./test_images/monalisa.jpg --canvas_color 'black' --max_m_strokes 300 --max_divide 4

Running through SSH

If you would like to run remotely through ssh and do not have something like X-display installed, you will need --disable_preview to turn off cv2.imshow on the run.

python demo_prog.py --disable_preview

Google Colab

Here we also provide a minimal working example of the inference runtime of our method. Check out the following runtimes and see your result on Colab.

Colab Runtime 1 : Image to painting translation (progressive rendering)

Colab Runtime 2 : Image to painting translation with image style transfer

To retrain your neural renderer

You can also choose a brush type and train the stroke renderer from scratch. The only thing to do is to run the following common. During the training, the ground truth strokes are generated on-the-fly, so you don't need to download any external dataset.

python train_imitator.py --renderer oilpaintbrush --net_G zou-fusion-net --checkpoint_dir ./checkpoints_G --vis_dir val_out --max_num_epochs 400 --lr 2e-4 --batch_size 64

Citation

If you use our code for your research, please cite the following paper:

@inproceedings{zou2020stylized,
    title={Stylized Neural Painting},
      author={Zhengxia Zou and Tianyang Shi and Shuang Qiu and Yi Yuan and Zhenwei Shi},
      year={2020},
      eprint={2011.08114},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022