Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Related tags

Deep LearningDCPose
Overview

Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Introduction

This is the official code of Deep Dual Consecutive Network for Human Pose Estimation.

Multi-frame human pose estimation in complicated situations is challenging. Although state-of-the-art human joints detectors have demonstrated remarkable results for static images, their performances come short when we apply these models to video sequences. Prevalent shortcomings include the failure to handle motion blur, video defocus, or pose occlusions, arising from the inability in capturing the temporal dependency among video frames. On the other hand, directly employing conventional recurrent neural networks incurs empirical difficulties in modeling spatial contexts, especially for dealing with pose occlusions. In this paper, we propose a novel multi-frame human pose estimation framework, leveraging abundant temporal cues between video frames to facilitate keypoint detection. Three modular components are designed in our framework. A Pose Temporal Merger encodes keypoint spatiotemporal context to generate effective searching scopes while a Pose Residual Fusion module computes weighted pose residuals in dual directions. These are then processed via our Pose Correction Network for efficient refining of pose estimations. Our method ranks No.1 in the Multi-frame Person Pose Estimation Challenge on the large-scale benchmark datasets PoseTrack2017 and PoseTrack2018. We have released our code, hoping to inspire future research.

Visual Results

On PoseTrack

Comparison with SOTA method

Experiments

Results on PoseTrack 2017 validation set

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
PoseFlow 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5
JointFlow - - - - - - - 69.3
FastPose 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3
SimpleBaseline(2018 ECCV) 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7
STEmbedding 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0
HRNet(2019 CVPR) 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3
MDPN 85.2 88.8 83.9 77.5 79.0 77.0 71.4 80.7
PoseWarper(2019 NIPS) 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2
DCPose 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8

Results on PoseTrack 2017 test set(https://posetrack.net/leaderboard.php)

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
PoseFlow 64.9 67.5 65.0 59.0 62.5 62.8 57.9 63.0
JointFlow - - - 53.1 - - 50.4 63.4
KeyTrack - - - 71.9 - - 65.0 74.0
DetTrack - - - 69.8 - - 65.9 74.1
SimpleBaseline 80.1 80.2 76.9 71.5 72.5 72.4 65.7 74.6
HRNet 80.0 80.2 76.9 72.0 73.4 72.5 67.0 74.9
PoseWarper 79.5 84.3 80.1 75.8 77.6 76.8 70.8 77.9
DCPose 84.3 84.9 80.5 76.1 77.9 77.1 71.2 79.2

Results on PoseTrack 2018 validation set

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
AlphaPose 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9
MDPN 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0
PoseWarper 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7
DCPose 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9

Results on PoseTrack 2018 test set

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
AlphaPose++ - - - 66.2 - - 65.0 67.6
DetTrack - - - 69.8 - - 67.1 73.5
MDPN - - - 74.5 - - 69.0 76.4
PoseWarper 78.9 84.4 80.9 76.8 75.6 77.5 71.8 78.0
DCPose 82.8 84.0 80.8 77.2 76.1 77.6 72.3 79.0

Installation & Quick Start

Check docs/installation.md for instructions on how to build DCPose from source.

A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022