SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

Overview

License: MIT Python GitHub code size in bytes Downloads GitHub Workflow Status PyPI version GitHub issues GitHub commit activity GitHub last commit arXiv

[arXiv]

The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, which was actually in operation for a decade. In addition, the SHIFT15M dataset has several types of dataset shifts, allowing us to evaluate the robustness of the model to different types of shifts (e.g., covariate shift and target shift).

We provide the Datasheet for SHIFT15M. This datasheet is based on the Datasheets for Datasets [1] template.

System Python 3.6 Python 3.7 Python 3.8
Linux CPU
Linux GPU
Windows CPU / GPU Status Currently Unavailable Status Currently Unavailable Status Currently Unavailable
Mac OS CPU

SHIFT15M is a large-scale dataset based on approximately 15 million items accumulated by the fashion search service IQON.

Installation

From PyPi

$ pip install shift15m

From source

$ git clone https://github.com/st-tech/zozo-shift15m.git
$ cd zozo-shift15m
$ poetry build
$ pip install dist/shift15m-xxxx-py3-none-any.whl

Download SHIFT15M dataset

Use Dataset class

You can download SHIFT15M dataset as follows:

from shift15.datasets import NumLikesRegression

dataset = NumLikesRegression(root="./data", download=True)

Download directly by using download scripts

Please download the dataset as follows:

$ bash scripts/download_all.sh

To avoid downloading the test dataset for set matching (80GB), which is not required in training, you can use the following script.

$ bash scripts/download_all_wo_set_testdata.sh

Tasks

The following tasks are now available:

Tasks Task type Shift type # of input dim # of output dim
NumLikesRegression regression target shift (N, 25) (N, 1)
SumPricesRegression regression covariate shift, target shift (N, 1) (N, 1)
ItemPriceRegression regression target shift (N, 4096) (N, 1)
ItemCategoryClassification classification target shift (N, 4096) (N, 7)
Set2SetMatching set-to-set matching covariate shift (N, 4096)x(M, 4096) (1)

Benchmarks

As templates for numerical experiments on the SHIFT15M dataset, we have published experimental results for each task with several models.

Original Dataset Structure

The original dataset is maintained in json format, and a row consists of the following:

{
  "user":{"user_id":"xxxx", "fav_brand_ids":"xxxx,xx,..."},
  "like_num":"xx",
  "set_id":"xxx",
  "items":[
    {"price":"xxxx","item_id":"xxxxxx","category_id1":"xx","category_id2":"xxxxx"},
    ...
  ],
  "publish_date":"yyyy-mm-dd"
}

Contributing

To learn more about making a contribution to SHIFT15M, please see the following materials:

License

The dataset itself is provided under a CC BY-NC 4.0 license. On the other hand, the software in this repository is provided under the MIT license.

Dataset metadata

The following table is necessary for this dataset to be indexed by search engines such as Google Dataset Search.

property value
name SHIFT15M Dataset
alternateName SHIFT15M
alternateName shift15m-dataset
url
sameAs https://github.com/st-tech/zozo-shift15m
description SHIFT15M is a multi-objective, multi-domain dataset which includes multiple dataset shifts.
provider
property value
name ZOZO Research
sameAs https://ja.wikipedia.org/wiki/ZOZO
license
property value
name CC BY-NC 4.0
url

Citation

@misc{Kimura_SHIFT15M_Multiobjective_LargeScale_2021,
author = {Kimura, Masanari and Nakamura, Takuma and Saito, Yuki},
month = {8},
title = {SHIFT15M: Multiobjective Large-Scale Fashion Dataset with Distributional Shifts},
year = {2021}
}

Errata

No errata are currently available.

References

  • [1] Gebru, Timnit, et al. "Datasheets for datasets." arXiv preprint arXiv:1803.09010 (2018).
Comments
Releases(v0.2.0)
  • v0.2.0(Sep 20, 2022)

    • add tags info as follows:
    {
      "user":{"user_id":"xxxx", "fav_brand_ids":"xxxx,xx,..."},
      "like_num":"xx",
      "set_id":"xxx",
      "items":[
        {"price":"xxxx","item_id":"xxxxxx","category_id1":"xx","category_id2":"xxxxx"},
        ...
      ],
      "publish_date":"yyyy-mm-dd",
      "tags": "tag_a, tag_b, tag_c, ..."
    }
    
    • add superset matching benchmark
    • fix a label creation bug on set matching with multiple splits
    Source code(tar.gz)
    Source code(zip)
  • v.0.1.2(Nov 24, 2021)

Owner
ZOZO, Inc.
ZOZO, Inc.
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022