SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

Overview

License: MIT Python GitHub code size in bytes Downloads GitHub Workflow Status PyPI version GitHub issues GitHub commit activity GitHub last commit arXiv

[arXiv]

The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, which was actually in operation for a decade. In addition, the SHIFT15M dataset has several types of dataset shifts, allowing us to evaluate the robustness of the model to different types of shifts (e.g., covariate shift and target shift).

We provide the Datasheet for SHIFT15M. This datasheet is based on the Datasheets for Datasets [1] template.

System Python 3.6 Python 3.7 Python 3.8
Linux CPU
Linux GPU
Windows CPU / GPU Status Currently Unavailable Status Currently Unavailable Status Currently Unavailable
Mac OS CPU

SHIFT15M is a large-scale dataset based on approximately 15 million items accumulated by the fashion search service IQON.

Installation

From PyPi

$ pip install shift15m

From source

$ git clone https://github.com/st-tech/zozo-shift15m.git
$ cd zozo-shift15m
$ poetry build
$ pip install dist/shift15m-xxxx-py3-none-any.whl

Download SHIFT15M dataset

Use Dataset class

You can download SHIFT15M dataset as follows:

from shift15.datasets import NumLikesRegression

dataset = NumLikesRegression(root="./data", download=True)

Download directly by using download scripts

Please download the dataset as follows:

$ bash scripts/download_all.sh

To avoid downloading the test dataset for set matching (80GB), which is not required in training, you can use the following script.

$ bash scripts/download_all_wo_set_testdata.sh

Tasks

The following tasks are now available:

Tasks Task type Shift type # of input dim # of output dim
NumLikesRegression regression target shift (N, 25) (N, 1)
SumPricesRegression regression covariate shift, target shift (N, 1) (N, 1)
ItemPriceRegression regression target shift (N, 4096) (N, 1)
ItemCategoryClassification classification target shift (N, 4096) (N, 7)
Set2SetMatching set-to-set matching covariate shift (N, 4096)x(M, 4096) (1)

Benchmarks

As templates for numerical experiments on the SHIFT15M dataset, we have published experimental results for each task with several models.

Original Dataset Structure

The original dataset is maintained in json format, and a row consists of the following:

{
  "user":{"user_id":"xxxx", "fav_brand_ids":"xxxx,xx,..."},
  "like_num":"xx",
  "set_id":"xxx",
  "items":[
    {"price":"xxxx","item_id":"xxxxxx","category_id1":"xx","category_id2":"xxxxx"},
    ...
  ],
  "publish_date":"yyyy-mm-dd"
}

Contributing

To learn more about making a contribution to SHIFT15M, please see the following materials:

License

The dataset itself is provided under a CC BY-NC 4.0 license. On the other hand, the software in this repository is provided under the MIT license.

Dataset metadata

The following table is necessary for this dataset to be indexed by search engines such as Google Dataset Search.

property value
name SHIFT15M Dataset
alternateName SHIFT15M
alternateName shift15m-dataset
url
sameAs https://github.com/st-tech/zozo-shift15m
description SHIFT15M is a multi-objective, multi-domain dataset which includes multiple dataset shifts.
provider
property value
name ZOZO Research
sameAs https://ja.wikipedia.org/wiki/ZOZO
license
property value
name CC BY-NC 4.0
url

Citation

@misc{Kimura_SHIFT15M_Multiobjective_LargeScale_2021,
author = {Kimura, Masanari and Nakamura, Takuma and Saito, Yuki},
month = {8},
title = {SHIFT15M: Multiobjective Large-Scale Fashion Dataset with Distributional Shifts},
year = {2021}
}

Errata

No errata are currently available.

References

  • [1] Gebru, Timnit, et al. "Datasheets for datasets." arXiv preprint arXiv:1803.09010 (2018).
Comments
Releases(v0.2.0)
  • v0.2.0(Sep 20, 2022)

    • add tags info as follows:
    {
      "user":{"user_id":"xxxx", "fav_brand_ids":"xxxx,xx,..."},
      "like_num":"xx",
      "set_id":"xxx",
      "items":[
        {"price":"xxxx","item_id":"xxxxxx","category_id1":"xx","category_id2":"xxxxx"},
        ...
      ],
      "publish_date":"yyyy-mm-dd",
      "tags": "tag_a, tag_b, tag_c, ..."
    }
    
    • add superset matching benchmark
    • fix a label creation bug on set matching with multiple splits
    Source code(tar.gz)
    Source code(zip)
  • v.0.1.2(Nov 24, 2021)

Owner
ZOZO, Inc.
ZOZO, Inc.
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022