Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Overview

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Official Pytorch implementation of Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Setup

This setting requires CUDA 11. However, you can still use your own environment by installing requirements including PyTorch and Torchvision.

  1. Install conda environment and activate it
conda env create -f environment.yml
conda activate biascon
  1. Prepare dataset.
  • Biased MNIST
    By default, we set download=True for convenience.
    Thus, you only have to make the empty dataset directory with mkdir -p data/biased_mnist and run the code.

  • CelebA
    Download CelebA dataset under data/celeba

  • UTKFace
    Download UTKFace dataset under data/utk_face

  • ImageNet & ImageNet-A
    We use ILSVRC 2015 ImageNet dataset.
    Download ImageNet under ./data/imagenet and ImageNet-A under ./data/imagenet-a

Biased MNIST (w/ bias labels)

We use correlation {0.999, 0.997, 0.995, 0.99, 0.95, 0.9}.

Bias-contrastive loss (BiasCon)

python train_biased_mnist_bc.py --corr 0.999 --seed 1

Bias-balancing loss (BiasBal)

python train_biased_mnist_bb.py --corr 0.999 --seed 1

Joint use of BiasCon and BiasBal losses (BC+BB)

python train_biased_mnist_bc.py --bb 1 --corr 0.999 --seed 1

CelebA

We assess CelebA dataset with target attributes of HeavyMakeup (--task makeup) and Blonde (--task blonde).

Bias-contrastive loss (BiasCon)

python train_celeba_bc.py --task makeup --seed 1

Bias-balancing loss (BiasBal)

python train_celeba_bb.py --task makeup --seed 1

Joint use of BiasCon and BiasBal losses (BC+BB)

python train_celeba_bc.py --bb 1 --task makeup --seed 1

UTKFace

We assess UTKFace dataset biased toward Race (--task race) and Age (--task age) attributes.

Bias-contrastive loss (BiasCon)

python train_utk_face_bc.py --task race --seed 1

Bias-balancing loss (BiasBal)

python train_utk_face_bb.py --task race --seed 1

Joint use of BiasCon and BiasBal losses (BC+BB)

python train_utk_face_bc.py --bb 1 --task race --seed 1

Biased MNIST (w/o bias labels)

We use correlation {0.999, 0.997, 0.995, 0.99, 0.95, 0.9}.

Soft Bias-contrastive loss (SoftCon)

  1. Train a bias-capturing model and get bias features.
python get_biased_mnist_bias_features.py --corr 0.999 --seed 1
  1. Train a model with bias features.
python train_biased_mnist_softcon.py --corr 0.999 --seed 1

ImageNet

We use texture cluster information from ReBias (Bahng et al., 2020).

Soft Bias-contrastive loss (SoftCon)

  1. Train a bias-capturing model and get bias features.
python get_imagenet_bias_features.py --seed 1
  1. Train a model with bias features.
python train_imagenet_softcon.py --seed 1
Owner
Youngkyu
Machine Learning Engineer / Backend Engineer
Youngkyu
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023