PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

Related tags

Deep LearningREMIND
Overview

REMIND Your Neural Network to Prevent Catastrophic Forgetting

This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An arXiv pre-print of our paper is available.

REMIND (REplay using Memory INDexing) is a novel brain-inspired streaming learning model that uses tensor quantization to efficiently store hidden representations (e.g., CNN feature maps) for later replay. REMIND implements this compression using Product Quantization (PQ) and outperforms existing models on the ImageNet and CORe50 classification datasets. Further, we demonstrate REMIND's robustness by pioneering streaming Visual Question Answering (VQA), in which an agent must answer questions about images.

Formally, REMIND takes an input image and passes it through frozen layers of a network to obtain tensor representations (feature maps). It then quantizes the tensors via PQ and stores the indices in memory for replay. The decoder reconstructs a previous subset of tensors from stored indices to train the plastic layers of the network before inference. We restrict the size of REMIND's replay buffer and use a uniform random storage policy.

REMIND

Dependencies

⚠️ ⚠️ For unknown reasons, our code does not reproduce results in PyTorch versions greater than PyTorch 1.3.1. Please follow our instructions below to ensure reproducibility.

We have tested the code with the following packages and versions:

  • Python 3.7.6
  • PyTorch (GPU) 1.3.1
  • torchvision 0.4.2
  • NumPy 1.18.5
  • FAISS (CPU) 1.5.2
  • CUDA 10.1 (also works with CUDA 10.0)
  • Scikit-Learn 0.23.1
  • Scipy 1.1.0
  • NVIDIA GPU

We recommend setting up a conda environment with these same package versions:

conda create -n remind_proj python=3.7
conda activate remind_proj
conda install numpy=1.18.5
conda install pytorch=1.3.1 torchvision=0.4.2 cudatoolkit=10.1 -c pytorch
conda install faiss-cpu=1.5.2 -c pytorch

Setup ImageNet-2012

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset has 1000 categories and 1.2 million images. The images do not need to be preprocessed or packaged in any database, but the validation images need to be moved into appropriate subfolders. See link.

  1. Download the images from http://image-net.org/download-images

  2. Extract the training data:

    mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
    tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
    find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
    cd ..
  3. Extract the validation data and move images to subfolders:

    mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
    wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash

Repo Structure & Descriptions

Training REMIND on ImageNet (Classification)

We have provided the necessary files to train REMIND on the exact same ImageNet ordering used in our paper (provided in imagenet_class_order.txt). We also provide steps for running REMIND on an alternative ordering.

To train REMIND on the ImageNet ordering from our paper, follow the steps below:

  1. Run run_imagenet_experiment.sh to train REMIND on the ordering from our paper. Note, this will use our ordering and associated files provided in imagenet_files.

To train REMIND on a different ImageNet ordering, follow the steps below:

  1. Generate a text file containing one class name per line in the desired order.
  2. Run make_numpy_imagenet_label_files.py to generate the necessary numpy files for the desired ordering using the text file from step 1.
  3. Run train_base_init_network.sh to train an offline model using the desired ordering and label files generated in step 2 on the base init data.
  4. Run run_imagenet_experiment.sh using the label files from step 2 and the ckpt file from step 3 to train REMIND on the desired ordering.

Files generated from the streaming experiment:

  • *.json files containing incremental top-1 and top-5 accuracies
  • *.pth files containing incremental model predictions/probabilities
  • *.pth files containing incremental REMIND classifier (F) weights
  • *.pkl files containing PQ centroids and incremental buffer data (e.g., latent codes)

To continue training REMIND from a previous ckpt:

We save out incremental weights and associated data for REMIND after each evaluation cycle. This enables REMIND to continue training from these saved files (in case of a computer crash etc.). This can be done as follows in run_imagenet_experiment.sh:

  1. Set the --resume_full_path argument to the path where the previous REMIND model was saved.
  2. Set the --streaming_min_class argument to the class REMIND left off on.
  3. Run run_imagenet_experiment.sh

Training REMIND on VQA Datasets

We use the gensen library for question features. Execute the following steps to set it up:

cd ${GENSENPATH} 
git clone [email protected]:erobic/gensen.git
cd ${GENSENPATH}/data/embedding
chmod +x glove25.sh && ./glove2h5.sh    
cd ${GENSENPATH}/data/models
chmod +x download_models.sh && ./download_models.sh

Training REMIND on CLEVR

Note: For convenience, we pre-extract all the features including the PQ encoded features. This requires 140 GB of free space, assuming images are deleted after feature extraction.

  1. Download and extract CLEVR images+annotations:

    wget https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip
    unzip CLEVR_v1.0.zip
  2. Extract question features

    • Clone the gensen repository and download glove features:
    cd ${GENSENPATH} 
    git clone [email protected]:erobic/gensen.git
    cd ${GENSENPATH}/data/embedding
    chmod +x glove25.sh && ./glove2h5.sh    
    cd ${GENSENPATH}/data/models
    chmod +x download_models.sh && ./download_models.sh
    
    • Edit vqa_experiments/clevr/extract_question_features_clevr.py, changing the DATA_PATH variable to point to CLEVR dataset and GENSEN_PATH to point to gensen repository and extract features: python vqa_experiments/clevr/extract_question_features_clevr.py

    • Pre-process the CLEVR questions Edit $PATH variable in vqa_experiments/clevr/preprocess_clevr.py file, pointing it to the directory where CLEVR was extracted

  3. Extract image features, train PQ encoder and extract encoded features

    • Extract image features: python -u vqa_experiments/clevr/extract_image_features_clevr.py --path /path/to/CLEVR
    • In pq_encoding_clevr.py, change the value of PATH and streaming_type (as either 'iid' or 'qtype')
    • Train PQ encoder and extract features: python vqa_experiments/clevr/pq_encoding_clevr.py
  4. Train REMIND

    • Edit data_path in vqa_experiments/configs/config_CLEVR_streaming.py
    • Run ./vqa_experiments/run_clevr_experiment.sh (Set DATA_ORDER to either qtype or iid to define the data order)

Training REMIND on TDIUC

Note: For convenience, we pre-extract all the features including the PQ encoded features. This requires around 170 GB of free space, assuming images are deleted after feature extraction.

  1. Download TDIUC

    cd ${TDIUC_PATH}
    wget https://kushalkafle.com/data/TDIUC.zip && unzip TDIUC.zip
    cd TDIUC && python setup.py --download Y # You may need to change print '' statements to print('')
    
  2. Extract question features

    • Edit vqa_experiments/clevr/extract_question_features_tdiuc.py, changing the DATA_PATH variable to point to TDIUC dataset and GENSEN_PATH to point to gensen repository and extract features: python vqa_experiments/tdiuc/extract_question_features_tdiuc.py

    • Pre-process the TDIUC questions Edit $PATH variable in vqa_experiments/clevr/preprocess_tdiuc.py file, pointing it to the directory where TDIUC was extracted

  3. Extract image features, train PQ encoder and extract encoded features

    • Extract image features: python -u vqa_experiments/tdiuc/extract_image_features_tdiuc.py --path /path/to/TDIUC
    • In pq_encoding_tdiuc.py, change the value of PATH and streaming_type (as either 'iid' or 'qtype')
    • Train PQ encoder and extract features: python vqa_experiments/clevr/pq_encoding_clevr.py
  4. Train REMIND

    • Edit data_path in vqa_experiments/configs/config_TDIUC_streaming.py
    • Run ./vqa_experiments/run_tdiuc_experiment.sh (Set DATA_ORDER to either qtype or iid to define the data order)

Citation

If using this code, please cite our paper.

@inproceedings{hayes2020remind,
  title={REMIND Your Neural Network to Prevent Catastrophic Forgetting},
  author={Hayes, Tyler L and Kafle, Kushal and Shrestha, Robik and Acharya, Manoj and Kanan, Christopher},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}
Owner
Tyler Hayes
I am a PhD candidate at the Rochester Institute of Technology (RIT). My current research is on lifelong machine learning.
Tyler Hayes
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022