Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Overview

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

We propose Disentangled Audio-Visual System (DAVS) to address arbitrary-subject talking face generation in this work, which aims to synthesize a sequence of face images that correspond to given speech semantics, conditioning on either an unconstrained speech audio or video.

[Project] [Paper] [Demo]

Recommondation of our CVPR21 repo

This repo is barely maintaining since the version of this code is out of date. If you are interested in the topic of Talking Face Generation, feel free to try the CODE of our CVPR2021 PAPER!

Requirements

Generating test results

Create the default folder "checkpoints" and put the checkpoint in it or get the CHECKPOINT_PATH
  • Samples for testing can be found in this folder named 0572_0019_0003. This is a pre-processed sample from the Voxceleb Dataset.

  • Run the testing script to generate videos from video:

python test_all.py  --test_root ./0572_0019_0003/video --test_type video --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH
  • Run the testing script to generate videos from audio:
python test_all.py  --test_root ./0572_0019_0003/audio --test_type audio --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH

Sample Results

  • Talking Effect on Human Characters

  • Talking Effect on Non-human Characters (Trained on Human Faces Only)

Create more samples

  • The face detection tool used in the demo videos can be found at RSA. It will return a Matfile with 5 key point locations in a row for each image. Other face alignment methods are also appliable such as dlib. The key points for face alignement we used are the two for the center of the eyes and the average point of the corners of the mouth. With each image's PATH and the face POINTS, you can find our way of face alignment at preprocess/face_align.py.

  • Our preprocessing of the audio files is the same and borrowed from the matlab code of SyncNet. Then we save the mfcc features into bin files.

Preparing Training Data

  • We used the LRW dataset for training.
  • The directories are arranged like this:
data
├── train, val, test
|	├── 0, 1, 2 ... 499 (one folder for each class)
|	│   ├── 0, 1, 2 ... #videos per class
|	│   │   ├── align_face256
|	│   │   |   ├── 0, 1, ... 28.jpg
|	│   |   ├── mfcc20
|	│   │   |   ├── 2, 3 ... 26.bin

where each video is extracted to frames and aligned using our protocol, and each audio is processed and saved using Matlab.

Training

python train.py
  • This is still a beta version of the training code which only disentangles wid information from pid space. Running the train.py only might not be able to fully reproduce the paper. However, it can be served as a reference for how we implement the whole training process.
  • During our own implementation, the classification part (without generation and disentanglement) is pretrained first. The pretraining training code is temporarily not provided.

Postprocessing Details (Optional)

  • The directly generated results may suffer from a "zoom-in-and-out" condition which we assume is caused by our alignment of the training set. We solve the unstable problem using Subspace Video Stabilization in the demos.

License and Citation

The use of this software is RESTRICTED to non-commercial research and educational purposes.

@inproceedings{zhou2019talking,
  title     = {Talking Face Generation by Adversarially Disentangled Audio-Visual Representation},
  author    = {Zhou, Hang and Liu, Yu and Liu, Ziwei and Luo, Ping and Wang, Xiaogang},
  booktitle = {AAAI Conference on Artificial Intelligence (AAAI)},
  year      = {2019},
}

Acknowledgement

The structure of this codebase is borrowed from pix2pix.

Owner
Hang_Zhou
Ph.D. @ MMLab-CUHK
Hang_Zhou
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023