Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Overview

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

We propose Disentangled Audio-Visual System (DAVS) to address arbitrary-subject talking face generation in this work, which aims to synthesize a sequence of face images that correspond to given speech semantics, conditioning on either an unconstrained speech audio or video.

[Project] [Paper] [Demo]

Recommondation of our CVPR21 repo

This repo is barely maintaining since the version of this code is out of date. If you are interested in the topic of Talking Face Generation, feel free to try the CODE of our CVPR2021 PAPER!

Requirements

Generating test results

Create the default folder "checkpoints" and put the checkpoint in it or get the CHECKPOINT_PATH
  • Samples for testing can be found in this folder named 0572_0019_0003. This is a pre-processed sample from the Voxceleb Dataset.

  • Run the testing script to generate videos from video:

python test_all.py  --test_root ./0572_0019_0003/video --test_type video --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH
  • Run the testing script to generate videos from audio:
python test_all.py  --test_root ./0572_0019_0003/audio --test_type audio --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH

Sample Results

  • Talking Effect on Human Characters

  • Talking Effect on Non-human Characters (Trained on Human Faces Only)

Create more samples

  • The face detection tool used in the demo videos can be found at RSA. It will return a Matfile with 5 key point locations in a row for each image. Other face alignment methods are also appliable such as dlib. The key points for face alignement we used are the two for the center of the eyes and the average point of the corners of the mouth. With each image's PATH and the face POINTS, you can find our way of face alignment at preprocess/face_align.py.

  • Our preprocessing of the audio files is the same and borrowed from the matlab code of SyncNet. Then we save the mfcc features into bin files.

Preparing Training Data

  • We used the LRW dataset for training.
  • The directories are arranged like this:
data
├── train, val, test
|	├── 0, 1, 2 ... 499 (one folder for each class)
|	│   ├── 0, 1, 2 ... #videos per class
|	│   │   ├── align_face256
|	│   │   |   ├── 0, 1, ... 28.jpg
|	│   |   ├── mfcc20
|	│   │   |   ├── 2, 3 ... 26.bin

where each video is extracted to frames and aligned using our protocol, and each audio is processed and saved using Matlab.

Training

python train.py
  • This is still a beta version of the training code which only disentangles wid information from pid space. Running the train.py only might not be able to fully reproduce the paper. However, it can be served as a reference for how we implement the whole training process.
  • During our own implementation, the classification part (without generation and disentanglement) is pretrained first. The pretraining training code is temporarily not provided.

Postprocessing Details (Optional)

  • The directly generated results may suffer from a "zoom-in-and-out" condition which we assume is caused by our alignment of the training set. We solve the unstable problem using Subspace Video Stabilization in the demos.

License and Citation

The use of this software is RESTRICTED to non-commercial research and educational purposes.

@inproceedings{zhou2019talking,
  title     = {Talking Face Generation by Adversarially Disentangled Audio-Visual Representation},
  author    = {Zhou, Hang and Liu, Yu and Liu, Ziwei and Luo, Ping and Wang, Xiaogang},
  booktitle = {AAAI Conference on Artificial Intelligence (AAAI)},
  year      = {2019},
}

Acknowledgement

The structure of this codebase is borrowed from pix2pix.

Owner
Hang_Zhou
Ph.D. @ MMLab-CUHK
Hang_Zhou
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022