Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Related tags

Deep Learninghsnet
Overview

PWC PWC PWC PWC PWC PWC PWC PWC

Hypercorrelation Squeeze for Few-Shot Segmentation

This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juhong Min, Dahyun Kang, and Minsu Cho. Implemented on Python 3.7 and Pytorch 1.5.1.

For more information, check out project [website] and the paper on [arXiv].

Requirements

  • Python 3.7
  • PyTorch 1.5.1
  • cuda 10.1
  • tensorboard 1.14

Conda environment settings:

conda create -n hsnet python=3.7
conda activate hsnet

conda install pytorch=1.5.1 torchvision cudatoolkit=10.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX

Preparing Few-Shot Segmentation Datasets

Download following datasets:

1. PASCAL-5i

Download PASCAL VOC2012 devkit (train/val data):

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

Download PASCAL VOC2012 SDS extended mask annotations from our [Google Drive].

2. COCO-20i

Download COCO2014 train/val images and annotations:

wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Download COCO2014 train/val annotations from our Google Drive: [train2014.zip], [val2014.zip]. (and locate both train2014/ and val2014/ under annotations/ directory).

3. FSS-1000

Download FSS-1000 images and annotations from our [Google Drive].

Create a directory '../Datasets_HSN' for the above three few-shot segmentation datasets and appropriately place each dataset to have following directory structure:

../                         # parent directory
├── ./                      # current (project) directory
│   ├── common/             # (dir.) helper functions
│   ├── data/               # (dir.) dataloaders and splits for each FSSS dataset
│   ├── model/              # (dir.) implementation of Hypercorrelation Squeeze Network model 
│   ├── README.md           # intstruction for reproduction
│   ├── train.py            # code for training HSNet
│   └── test.py             # code for testing HSNet
└── Datasets_HSN/
    ├── VOC2012/            # PASCAL VOC2012 devkit
    │   ├── Annotations/
    │   ├── ImageSets/
    │   ├── ...
    │   └── SegmentationClassAug/
    ├── COCO2014/           
    │   ├── annotations/
    │   │   ├── train2014/  # (dir.) training masks (from Google Drive) 
    │   │   ├── val2014/    # (dir.) validation masks (from Google Drive)
    │   │   └── ..some json files..
    │   ├── train2014/
    │   └── val2014/
    └── FSS-1000/           # (dir.) contains 1000 object classes
        ├── abacus/   
        ├── ...
        └── zucchini/

Training

1. PASCAL-5i

python train.py --backbone {vgg16, resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark pascal
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 2 days until convergence (trained with four 2080 Ti GPUs).

2. COCO-20i

python train.py --backbone {resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark coco 
                --lr 1e-3
                --bsz 40
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 1 week until convergence (trained four Titan RTX GPUs).

3. FSS-1000

python train.py --backbone {vgg16, resnet50, resnet101} 
                --benchmark fss 
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 3 days until convergence (trained with four 2080 Ti GPUs).

Babysitting training:

Use tensorboard to babysit training progress:

  • For each experiment, a directory that logs training progress will be automatically generated under logs/ directory.
  • From terminal, run 'tensorboard --logdir logs/' to monitor the training progress.
  • Choose the best model when the validation (mIoU) curve starts to saturate.

Testing

1. PASCAL-5i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

2. COCO-20i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark coco 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

3. FSS-1000

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --benchmark fss 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

4. Evaluation without support feature masking on PASCAL-5i

  • To reproduce the results in Tab.1 of our main paper, COMMENT OUT line 51 in hsnet.py: support_feats = self.mask_feature(support_feats, support_mask.clone())

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone resnet101 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

Visualization

  • To visualize mask predictions, add command line argument --visualize: (prediction results will be saved under vis/ directory)
  python test.py '...other arguments...' --visualize  

Example qualitative results (1-shot):

BibTeX

If you use this code for your research, please consider citing:

@article{min2021hypercorrelation, 
   title={Hypercorrelation Squeeze for Few-Shot Segmentation},
   author={Juhong Min and Dahyun Kang and Minsu Cho},
   journal={arXiv preprint arXiv:2104.01538},
   year={2021}
}
Owner
Juhong Min
research interest in computer vision
Juhong Min
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022