Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Related tags

Deep Learninghsnet
Overview

PWC PWC PWC PWC PWC PWC PWC PWC

Hypercorrelation Squeeze for Few-Shot Segmentation

This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juhong Min, Dahyun Kang, and Minsu Cho. Implemented on Python 3.7 and Pytorch 1.5.1.

For more information, check out project [website] and the paper on [arXiv].

Requirements

  • Python 3.7
  • PyTorch 1.5.1
  • cuda 10.1
  • tensorboard 1.14

Conda environment settings:

conda create -n hsnet python=3.7
conda activate hsnet

conda install pytorch=1.5.1 torchvision cudatoolkit=10.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX

Preparing Few-Shot Segmentation Datasets

Download following datasets:

1. PASCAL-5i

Download PASCAL VOC2012 devkit (train/val data):

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

Download PASCAL VOC2012 SDS extended mask annotations from our [Google Drive].

2. COCO-20i

Download COCO2014 train/val images and annotations:

wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Download COCO2014 train/val annotations from our Google Drive: [train2014.zip], [val2014.zip]. (and locate both train2014/ and val2014/ under annotations/ directory).

3. FSS-1000

Download FSS-1000 images and annotations from our [Google Drive].

Create a directory '../Datasets_HSN' for the above three few-shot segmentation datasets and appropriately place each dataset to have following directory structure:

../                         # parent directory
├── ./                      # current (project) directory
│   ├── common/             # (dir.) helper functions
│   ├── data/               # (dir.) dataloaders and splits for each FSSS dataset
│   ├── model/              # (dir.) implementation of Hypercorrelation Squeeze Network model 
│   ├── README.md           # intstruction for reproduction
│   ├── train.py            # code for training HSNet
│   └── test.py             # code for testing HSNet
└── Datasets_HSN/
    ├── VOC2012/            # PASCAL VOC2012 devkit
    │   ├── Annotations/
    │   ├── ImageSets/
    │   ├── ...
    │   └── SegmentationClassAug/
    ├── COCO2014/           
    │   ├── annotations/
    │   │   ├── train2014/  # (dir.) training masks (from Google Drive) 
    │   │   ├── val2014/    # (dir.) validation masks (from Google Drive)
    │   │   └── ..some json files..
    │   ├── train2014/
    │   └── val2014/
    └── FSS-1000/           # (dir.) contains 1000 object classes
        ├── abacus/   
        ├── ...
        └── zucchini/

Training

1. PASCAL-5i

python train.py --backbone {vgg16, resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark pascal
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 2 days until convergence (trained with four 2080 Ti GPUs).

2. COCO-20i

python train.py --backbone {resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark coco 
                --lr 1e-3
                --bsz 40
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 1 week until convergence (trained four Titan RTX GPUs).

3. FSS-1000

python train.py --backbone {vgg16, resnet50, resnet101} 
                --benchmark fss 
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 3 days until convergence (trained with four 2080 Ti GPUs).

Babysitting training:

Use tensorboard to babysit training progress:

  • For each experiment, a directory that logs training progress will be automatically generated under logs/ directory.
  • From terminal, run 'tensorboard --logdir logs/' to monitor the training progress.
  • Choose the best model when the validation (mIoU) curve starts to saturate.

Testing

1. PASCAL-5i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

2. COCO-20i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark coco 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

3. FSS-1000

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --benchmark fss 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

4. Evaluation without support feature masking on PASCAL-5i

  • To reproduce the results in Tab.1 of our main paper, COMMENT OUT line 51 in hsnet.py: support_feats = self.mask_feature(support_feats, support_mask.clone())

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone resnet101 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

Visualization

  • To visualize mask predictions, add command line argument --visualize: (prediction results will be saved under vis/ directory)
  python test.py '...other arguments...' --visualize  

Example qualitative results (1-shot):

BibTeX

If you use this code for your research, please consider citing:

@article{min2021hypercorrelation, 
   title={Hypercorrelation Squeeze for Few-Shot Segmentation},
   author={Juhong Min and Dahyun Kang and Minsu Cho},
   journal={arXiv preprint arXiv:2104.01538},
   year={2021}
}
Owner
Juhong Min
research interest in computer vision
Juhong Min
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022