Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Related tags

Deep Learninghsnet
Overview

PWC PWC PWC PWC PWC PWC PWC PWC

Hypercorrelation Squeeze for Few-Shot Segmentation

This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juhong Min, Dahyun Kang, and Minsu Cho. Implemented on Python 3.7 and Pytorch 1.5.1.

For more information, check out project [website] and the paper on [arXiv].

Requirements

  • Python 3.7
  • PyTorch 1.5.1
  • cuda 10.1
  • tensorboard 1.14

Conda environment settings:

conda create -n hsnet python=3.7
conda activate hsnet

conda install pytorch=1.5.1 torchvision cudatoolkit=10.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX

Preparing Few-Shot Segmentation Datasets

Download following datasets:

1. PASCAL-5i

Download PASCAL VOC2012 devkit (train/val data):

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

Download PASCAL VOC2012 SDS extended mask annotations from our [Google Drive].

2. COCO-20i

Download COCO2014 train/val images and annotations:

wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Download COCO2014 train/val annotations from our Google Drive: [train2014.zip], [val2014.zip]. (and locate both train2014/ and val2014/ under annotations/ directory).

3. FSS-1000

Download FSS-1000 images and annotations from our [Google Drive].

Create a directory '../Datasets_HSN' for the above three few-shot segmentation datasets and appropriately place each dataset to have following directory structure:

../                         # parent directory
├── ./                      # current (project) directory
│   ├── common/             # (dir.) helper functions
│   ├── data/               # (dir.) dataloaders and splits for each FSSS dataset
│   ├── model/              # (dir.) implementation of Hypercorrelation Squeeze Network model 
│   ├── README.md           # intstruction for reproduction
│   ├── train.py            # code for training HSNet
│   └── test.py             # code for testing HSNet
└── Datasets_HSN/
    ├── VOC2012/            # PASCAL VOC2012 devkit
    │   ├── Annotations/
    │   ├── ImageSets/
    │   ├── ...
    │   └── SegmentationClassAug/
    ├── COCO2014/           
    │   ├── annotations/
    │   │   ├── train2014/  # (dir.) training masks (from Google Drive) 
    │   │   ├── val2014/    # (dir.) validation masks (from Google Drive)
    │   │   └── ..some json files..
    │   ├── train2014/
    │   └── val2014/
    └── FSS-1000/           # (dir.) contains 1000 object classes
        ├── abacus/   
        ├── ...
        └── zucchini/

Training

1. PASCAL-5i

python train.py --backbone {vgg16, resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark pascal
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 2 days until convergence (trained with four 2080 Ti GPUs).

2. COCO-20i

python train.py --backbone {resnet50, resnet101} 
                --fold {0, 1, 2, 3} 
                --benchmark coco 
                --lr 1e-3
                --bsz 40
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 1 week until convergence (trained four Titan RTX GPUs).

3. FSS-1000

python train.py --backbone {vgg16, resnet50, resnet101} 
                --benchmark fss 
                --lr 1e-3
                --bsz 20
                --load "path_to_trained_model/best_model.pt"
                --logpath "your_experiment_name"
  • Training takes approx. 3 days until convergence (trained with four 2080 Ti GPUs).

Babysitting training:

Use tensorboard to babysit training progress:

  • For each experiment, a directory that logs training progress will be automatically generated under logs/ directory.
  • From terminal, run 'tensorboard --logdir logs/' to monitor the training progress.
  • Choose the best model when the validation (mIoU) curve starts to saturate.

Testing

1. PASCAL-5i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

2. COCO-20i

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {resnet50, resnet101} 
               --fold {0, 1, 2, 3} 
               --benchmark coco 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

3. FSS-1000

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone {vgg16, resnet50, resnet101} 
               --benchmark fss 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

4. Evaluation without support feature masking on PASCAL-5i

  • To reproduce the results in Tab.1 of our main paper, COMMENT OUT line 51 in hsnet.py: support_feats = self.mask_feature(support_feats, support_mask.clone())

Pretrained models with tensorboard logs are available on our [Google Drive].

python test.py --backbone resnet101 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

Visualization

  • To visualize mask predictions, add command line argument --visualize: (prediction results will be saved under vis/ directory)
  python test.py '...other arguments...' --visualize  

Example qualitative results (1-shot):

BibTeX

If you use this code for your research, please consider citing:

@article{min2021hypercorrelation, 
   title={Hypercorrelation Squeeze for Few-Shot Segmentation},
   author={Juhong Min and Dahyun Kang and Minsu Cho},
   journal={arXiv preprint arXiv:2104.01538},
   year={2021}
}
Owner
Juhong Min
research interest in computer vision
Juhong Min
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023