[NeurIPS'20] Multiscale Deep Equilibrium Models

Related tags

Deep Learningmdeq
Overview

Multiscale Deep Equilibrium Models

💥 💥 💥 💥

This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simpler & more efficient) implementation of MDEQ with the same set of tasks as here is now available in the DEQ repo.

We STRONGLY recommend using with the MDEQ-Vision code in the DEQ repo (which also supports Jacobian-related analysis).

💥 💥 💥 💥


This repository contains the code for the multiscale deep equilibrium (MDEQ) model proposed in the paper Multiscale Deep Equilibrium Models by Shaojie Bai, Vladlen Koltun and J. Zico Kolter.

Is implicit deep learning relevant for general, large-scale pattern recognition tasks? We propose the multiscale deep equilibrium (MDEQ) model, which expands upon the DEQ formulation substantially to introduce simultaneous equilibrium modeling of multiple signal resolutions. Specifically, MDEQ solves for and backpropagates through synchronized equilibria of multiple feature representation streams. Such structure rectifies one of the major drawbacks of DEQ, and provide natural hierarchical interfaces for auxiliary losses and compound training procedures (e.g., pretraining and finetuning). Our experiment demonstrate for the first time that "shallow" implicit models can scale to and achieve near-SOTA results on practical computer vision tasks (e.g., megapixel images on Cityscapes segmentation).

We provide in this repo the implementation and the links to the pretrained classification & segmentation MDEQ models.

If you find thie repository useful for your research, please consider citing our work:

@inproceedings{bai2020multiscale,
    author    = {Shaojie Bai and Vladlen Koltun and J. Zico Kolter},
    title     = {Multiscale Deep Equilibrium Models},
    booktitle   = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2020},
}

Overview

The structure of a multiscale deep equilibrium model (MDEQ) is shown below. All components of the model are shown in this figure (in practice, we use n=4).

Examples

Some examples of MDEQ segmentation results on the Cityscapes dataset.

Requirements

PyTorch >=1.4.0, torchvision >= 0.4.0

Datasets

  • CIFAR-10: We download the CIFAR-10 dataset using PyTorch's torchvision package (included in this repo).
  • ImageNet We follow the implementation from the PyTorch ImageNet Training repo.
  • Cityscapes: We download the Cityscapes dataset from its official website and process it according to this repo. Cityscapes dataset additionally require a list folder that aligns each original image with its corresponding labeled segmented image. This list folder can be downloaded here.

All datasets should be downloaded, processed and put in the respective data/[DATASET_NAME] directory. The data/ directory should look like the following:

data/
  cityscapes/
  imagenet/
  ...          (other datasets)
  list/        (see above)

Usage

All experiment settings are provided in the .yaml files under the experiments/ folder.

To train an MDEQ classification model on ImageNet/CIFAR-10, do

python tools/cls_train.py --cfg experiments/[DATASET_NAME]/[CONFIG_FILE_NAME].yaml

To train an MDEQ segmentation model on Cityscapes, do

python -m torch.distributed.launch --nproc_per_node=4 tools/seg_train.py --cfg experiments/[DATASET_NAME]/[CONFIG_FILE_NAME].yaml

where you should provide the pretrained ImageNet model path in the corresponding configuration (.yaml) file. We provide a sample pretrained model extractor in pretrained_models/, but you can also write your own script.

Similarly, to test the model and generate segmentation results on Cityscapes, do

python tools/seg_test.py --cfg experiments/[DATASET_NAME]/[CONFIG_FILE_NAME].yaml

You can (and probably should) initiate the Cityscapes training with an ImageNet-pretrained MDEQ. You need to extract the state dict from the ImageNet checkpointed model, and set the MODEL.PRETRAINED entry in Cityscapes yaml file to this state dict on disk.

The model implementation and MDEQ's algorithmic components (e.g., L-Broyden's method) can be found in lib/.

Pre-trained Models

We provide some reasonably good pre-trained weights here so that one can quickly play with DEQs without training from scratch.

Description Task Dataset Model
MDEQ-XL ImageNet Classification ImageNet download (.pkl)
MDEQ-XL Cityscapes(val) Segmentation Cityscapes download (.pkl)
MDEQ-Small ImageNet Classification ImageNet download (.pkl)
MDEQ-Small Cityscapes(val) Segmentation Cityscapes download (.pkl)

I. Example of how to evaluate the pretrained ImageNet model:

  1. Download the pretrained ImageNet .pkl file. (I recommend using the gdown command!)
  2. Put the model under pretrained_models/ folder with some file name [FILENAME].
  3. Run the MDEQ classification validation command:
python tools/cls_valid.py --testModel pretrained_models/[FILENAME] --cfg experiments/imagenet/cls_mdeq_[SIZE].yaml

For example, for MDEQ-Small, you should get >75% top-1 accuracy.

II. Example of how to use the pretrained ImageNet model to train on Cityscapes:

  1. Download the pretrained ImageNet .pkl file.
  2. Put the model under pretrained_models/ folder with some file name [FILENAME].
  3. In the corresponding experiments/cityscapes/seg_MDEQ_[SIZE].yaml (where SIZE is typically SMALL, LARGE or XL), set MODEL.PRETRAINED to "pretrained_models/[FILENAME]".
  4. Run the MDEQ segmentation training command (see the "Usage" section above):
python -m torch.distributed.launch --nproc_per_node=[N_GPUS] tools/seg_train.py --cfg experiments/cityscapes/seg_MDEQ_[SIZE].yaml

III. Example of how to use the pretrained Cityscapes model for inference:

  1. Download the pretrained Cityscapes .pkl file
  2. Put the model under pretrained_models/ folder with some file name [FILENAME].
  3. In the corresponding experiments/cityscapes/seg_MDEQ_[SIZE].yaml (where SIZE is typically SMALL, LARGE or XL), set TEST.MODEL_FILE to "pretrained_models/[FILENAME]".
  4. Run the MDEQ segmentation testing command (see the "Usage" section above):
python tools/seg_test.py --cfg experiments/cityscapes/seg_MDEQ_[SIZE].yaml

Tips:

  • To load the Cityscapes pretrained model, download the .pkl file and specify the path in config.[TRAIN/TEST].MODEL_FILE (which is '' by default) in the .yaml files. This is different from setting MODEL.PRETRAINED, see the point below.
  • The difference between [TRAIN/TEST].MODEL_FILE and MODEL.PRETRAINED arguments in the yaml files: the former is used to load all of the model parameters; the latter is for compound training (e.g., when transferring from ImageNet to Cityscapes, we want to discard the final classifier FC layers).
  • The repo supports checkpointing of models at each epoch. One can resume from a previously saved checkpoint by turning on the TRAIN.RESUME argument in the yaml files.
  • Just like DEQs, the MDEQ models can be slower than explicit deep networks, and even more so as the image size increases (because larger images typically require more Broyden iterations to converge well; see Figure 5 in the paper). But one can play with the forward and backward thresholds to adjust the runtime.

Acknowledgement

Some utilization code (e.g., model summary and yaml processing) of this repo were modified from the HRNet repo and the DEQ repo.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022