D-NeRF: Neural Radiance Fields for Dynamic Scenes

Related tags

Deep LearningD-NeRF
Overview

D-NeRF: Neural Radiance Fields for Dynamic Scenes

[Project] [Paper]

D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without the need of ground-truth geometry nor multi-view images.

This project is an extension of NeRF enabling it to model dynmaic scenes. The code heavily relays on NeRF-pytorch.

D-NeRF

Installation

git clone https://github.com/albertpumarola/D-NeRF.git
cd D-NeRF
conda create -n dnerf python=3.6
conda activate dnerf
pip install -r requirements.txt
cd torchsearchsorted
pip install .
cd ..

Download Pre-trained Weights

You can download the pre-trained models from drive or dropbox. Unzip the downloaded data to the project root dir in order to test it later. See the following directory structure for an example:

├── logs 
│   ├── mutant
│   ├── standup 
│   ├── ...

Download Dataset

You can download the datasets from drive or dropbox. Unzip the downloaded data to the project root dir in order to train. See the following directory structure for an example:

├── data 
│   ├── mutant
│   ├── standup 
│   ├── ...

Demo

We provide simple jupyter notebooks to explore the model. To use them first download the pre-trained weights and dataset.

Description Jupyter Notebook
Synthesize novel views at an arbitrary point in time. render.ipynb
Reconstruct mesh at an arbitrary point in time. reconstruct.ipynb
Quantitatively evaluate trained model. metrics.ipynb

Test

First download pre-trained weights and dataset. Then,

python run_dnerf.py --config configs/mutant.txt --render_only --render_test

This command will run the mutant experiment. When finished, results are saved to ./logs/mutant/renderonly_test_799999 To quantitatively evaluate model run metrics.ipynb notebook

Train

First download the dataset. Then,

conda activate dnerf
export PYTHONPATH='path/to/D-NeRF'
export CUDA_VISIBLE_DEVICES=0
python run_dnerf.py --config configs/mutant.txt

Citation

If you use this code or ideas from the paper for your research, please cite our paper:

@article{pumarola2020d,
  title={D-NeRF: Neural Radiance Fields for Dynamic Scenes},
  author={Pumarola, Albert and Corona, Enric and Pons-Moll, Gerard and Moreno-Noguer, Francesc},
  journal={arXiv preprint arXiv:2011.13961},
  year={2020}
}
Owner
Albert Pumarola
Computer Vision Researcher at Facebook Reality Labs
Albert Pumarola
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022