EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

Related tags

Deep LearningEdMIPS
Overview

EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

by Zhaowei Cai, and Nuno Vasconcelos.

This implementation is written by Zhaowei Cai at UC San Diego.

Introduction

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network architectures, including ResNet, GoogLeNet, and Inception-V3. More details can be found in the paper.

Citation

If you use our code/model/data, please cite our paper:

@inproceedings{cai20edmips,
  author = {Zhaowei Cai and Nuno Vasconcelos},
  Title = {Rethinking Differentiable Search for Mixed-Precision Neural Networks},
  booktitle = {CVPR},
  Year  = {2020}
}

Installation

  1. Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

  2. Clone the EdMIPS repository, and we'll call the directory that you cloned EdMIPS into EdMIPS_ROOT

    git clone https://github.com/zhaoweicai/EdMIPS.git
    cd EdMIPS_ROOT/

Searching the Mixed-precision Network with EdMIPS

You can start training EdMIPS. Take ResNet-18 for example.

python search.py \
  -a mixres18_w1234a234 --epochs 25 --step-epoch 10 --lr 0.1 --lra 0.01 --cd 0.00335 -j 16 \
  [your imagenet-folder with train and val folders]

The other network architectures are also available, including ResNet-50, GoogLeNet and Inception-V3.

Training the Searched Mixed-precision Network

After the EdMIPS searching is finished, with the checkpoint arch_checkpoint.pth.tar, you can start to train the classification model with the learned bit allocation.

python main.py \
  -a quantres18_cfg --epochs 95 --step-epoch 30 -j 16 \
  --ac arch_checkpoint.pth.tar \
  [your imagenet-folder with train and val folders]

Results

The results are shown as following:

network precision bit --cd top-1/5 acc. model
ResNet-18 uniform 2.0 65.1/86.2 download
ResNet-18 mixed 1.992 0.00335 65.9/86.5 download
ResNet-50 uniform 2.0 70.6/89.8 download
ResNet-50 mixed 2.007 0.00015 72.1/90.6 download
GoogleNet uniform 2.0 64.8/86.3 download
GoogleNet mixed 1.994 0.00045 67.8/88.0 download
Inception-V3 uniform 2.0 71.0/89.9 download
Inception-V3 mixed 1.982 0.0015 72.4/90.7 download

Disclaimer

  1. The training of EdMIPS has some variance. Tune --cd a little bit to get the optimal bit allocation you want.

  2. The BitOps are counted only on the quantized layers. They are normalized to the bit space as in the above table.

  3. Since some changes have been made after the paper submission, you may get slightly worse performances (0.1~0.2 points) than those in the paper.

If you encounter any issue when using our code/model, please let me know.

Owner
Zhaowei Cai
Zhaowei Cai
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022