Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Overview

Transformer Quantization

This repository contains the implementation and experiments for the paper presented in

Yelysei Bondarenko1, Markus Nagel1, Tijmen Blankevoort1, "Understanding and Overcoming the Challenges of Efficient Transformer Quantization", EMNLP 2021. [ACL Anthology] [ArXiv]

1 Qualcomm AI Research (Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.)

Reference

If you find our work useful, please cite

@inproceedings{bondarenko-etal-2021-understanding,
    title = "Understanding and Overcoming the Challenges of Efficient Transformer Quantization",
    author = "Bondarenko, Yelysei  and
      Nagel, Markus  and
      Blankevoort, Tijmen",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.627",
    pages = "7947--7969",
    abstract = "Transformer-based architectures have become the de-facto standard models for a wide range of Natural Language Processing tasks. However, their memory footprint and high latency are prohibitive for efficient deployment and inference on resource-limited devices. In this work, we explore quantization for transformers. We show that transformers have unique quantization challenges {--} namely, high dynamic activation ranges that are difficult to represent with a low bit fixed-point format. We establish that these activations contain structured outliers in the residual connections that encourage specific attention patterns, such as attending to the special separator token. To combat these challenges, we present three solutions based on post-training quantization and quantization-aware training, each with a different set of compromises for accuracy, model size, and ease of use. In particular, we introduce a novel quantization scheme {--} per-embedding-group quantization. We demonstrate the effectiveness of our methods on the GLUE benchmark using BERT, establishing state-of-the-art results for post-training quantization. Finally, we show that transformer weights and embeddings can be quantized to ultra-low bit-widths, leading to significant memory savings with a minimum accuracy loss. Our source code is available at \url{https://github.com/qualcomm-ai-research/transformer-quantization}.",
}

How to install

First, ensure locale variables are set as follows:

export LC_ALL=C.UTF-8
export LANG=C.UTF-8

Second, make sure to have Python ≥3.6 (tested with Python 3.6.8) and ensure the latest version of pip (tested with 21.2.4):

pip install --upgrade --no-deps pip

Next, install PyTorch 1.4.0 with the appropriate CUDA version (tested with CUDA 10.0, CuDNN 7.6.3):

pip install torch==1.4.0 torchvision==0.5.0 -f https://download.pytorch.org/whl/torch_stable.html

Finally, install the remaining dependencies using pip:

pip install -r requirements.txt

To run the code, the project root directory needs to be added to your pythonpath:

export PYTHONPATH="${PYTHONPATH}:/path/to/this/dir"

Running experiments

The main run file to reproduce all experiments is main.py. It contains 4 commands to train and validate FP32 and quantized model:

Usage: main.py [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  train-baseline
  train-quantized
  validate-baseline
  validate-quantized

You can see the full list of options for each command using python main.py [COMMAND] --help.

A. FP32 fine-tuning

To start with, you need to get the fune-tuned model(s) for the GLUE task of interest. Example run command for fine-tuning:

python main.py train-baseline --cuda --save-model --model-name bert_base_uncased --task rte \
    --learning-rate 3e-05 --batch-size 8 --eval-batch-size 8 --num-epochs 3 --max-seq-length 128 \
    --seed 1000 --output-dir /path/to/output/dir/

You can also do it directly using HuggingFace library [examples]. In all experiments we used seeds 1000 - 1004 and reported the median score. The sample output directory looks as follows:

/path/to/output/dir
├── config.out
├── eval_results_rte.txt
├── final_score.txt
├── out
│   ├── config.json  # Huggingface model config
│   ├── pytorch_model.bin  # PyTorch model checkpoint
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json  # Huggingface tokenizer config
│   ├── training_args.bin
│   └── vocab.txt  # Vocabulary
└── tb_logs  # TensorBoard logs
    ├── 1632747625.1250594
    │   └── events.out.tfevents.*
    └── events.out.tfevents.*

For validation (both full-precision and quantized), it is assumed that these output directories with the fine-tuned checkpoints are aranged as follows (you can also use a subset of GLUE tasks):

/path/to/saved_models/
├── rte/rte_model_dir
│   ├── out
│   │   ├── config.json  # Huggingface model config
│   │   ├── pytorch_model.bin  # PyTorch model checkpoint
│   │   ├── tokenizer_config.json  # Huggingface tokenizer config
│   │   ├── vocab.txt  # Vocabulary
│   │   ├── (...)
├── cola/cola_model_dir
│   ├── out
│   │   ├── (...)
├── mnli/mnli_model_dir
│   ├── out
│   │   ├── (...)
├── mrpc/mrpc_model_dir
│   ├── out
│   │   ├── (...)
├── qnli/qnli_model_dir
│   ├── out
│   │   ├── (...)
├── qqp/qqp_model_dir
│   ├── out
│   │   ├── (...)
├── sst2/sst2_model_dir
│   ├── out
│   │   ├── (...)
└── stsb/stsb_model_dir
    ├── out
    │   ├── (...)

Note, that you have to create this file structure manually.

The model can then be validated as follows:

python main.py validate-baseline --eval-batch-size 32 --seed 1000 --model-name bert_base_uncased \
    --model-path /path/to/saved_models/ --task rte

You can also validate multiple or all checkpoints by specifying --task --task [...] or --task all, respectively.

B. Post-training quantization (PTQ)

1) Standard (naïve) W8A8 per-tensor PTQ / base run command for all PTQ experiments

python main.py validate-quantized --act-quant --weight-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --n-bits 8 --n-bits-act 8 --qmethod symmetric_uniform \
	--qmethod-act asymmetric_uniform --weight-quant-method MSE --weight-opt-method golden_section \
	--act-quant-method current_minmax --est-ranges-batch-size 1 --num-est-batches 1 \
	--quant-setup all

Note that the range estimation settings are slightly different for each task.

2) Mixed precision W8A{8,16} PTQ

Specify --quant-dict "{'y': 16, 'h': 16, 'x': 16}":

  • 'x': 16 will set FFN's input to 16-bit
  • 'h': 16 will set FFN's output to 16-bit
  • 'y': 16 will set FFN's residual sum to 16-bit

For STS-B regression task, you will need to specify --quant-dict "{'y': 16, 'h': 16, 'x': 16, 'P': 16, 'C': 16}" and --quant-setup MSE_logits, which will also quantize pooler and the final classifier to 16-bit and use MSE estimator for the output.

3) Per-embedding and per-embedding-group (PEG) activation quantization

  • --per-embd -- Per-embedding quantization for all activations
  • --per-groups [N_GROUPS] -- PEG quantization for all activations, no permutation
  • --per-groups [N_GROUPS] --per-groups-permute -- PEG quantization for all activations, apply range-based permutation (separate for each quantizer)
  • --quant-dict "{'y': 'ng6', 'h': 'ng6', 'x': 'ng6'}" -- PEG quantization using 6 groups for FFN's input, output and residual sum, no permutation
  • --quant-dict "{'y': 'ngp6', 'h': 'ngp6', 'x': 'ngp6'}" --per-groups-permute-shared-h -- PEG quantization using 6 groups for FFN's input, output and residual sum, apply range-based permutation (shared between tensors in the same layer)

4) W4A32 PTQ with AdaRound

python main.py validate-quantized --weight-quant --no-act-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --qmethod symmetric_uniform --qmethod-act asymmetric_uniform --n-bits 4 \
	--weight-quant-method MSE --weight-opt-method grid --num-candidates 100 --quant-setup all \
	--adaround all --adaround-num-samples 1024 --adaround-init range_estimator \
	--adaround-mode learned_hard_sigmoid --adaround-asym --adaround-iters 10000 \
	--adaround-act-quant no_act_quant

C. Quantization-aware training (QAT)

Base run command for QAT experiments (using W4A8 for example):

python main.py train-quantized --cuda --do-eval --logging-first-step --weight-quant --act-quant \
	--pad-to-max-length --learn-ranges --tqdm --batch-size 8 --seed 1000 \
	--model-name bert_base_uncased --learning-rate 5e-05 --num-epochs 6 --warmup-steps 186 \
	--weight-decay 0.0 --attn-dropout 0.0 --hidden-dropout 0.0 --max-seq-length 128 --n-bits 4 \
	--n-bits-act 8 --qmethod symmetric_uniform --qmethod-act asymmetric_uniform \
	--weight-quant-method MSE --weight-opt-method golden_section --act-quant-method current_minmax \
	--est-ranges-batch-size 16 --num-est-batches 1 --quant-setup all \
	--model-path /path/to/saved_models/rte/out --task rte --output-dir /path/to/qat_output/dir

Note that the settings are slightly different for each task (see Appendix).

To run mixed-precision QAT with 2-bit embeddings and 4-bit weights, add --quant-dict "{'Et': 2}".

Owner
An initiative of Qualcomm Technologies, Inc.
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023