Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Overview

Transformer Quantization

This repository contains the implementation and experiments for the paper presented in

Yelysei Bondarenko1, Markus Nagel1, Tijmen Blankevoort1, "Understanding and Overcoming the Challenges of Efficient Transformer Quantization", EMNLP 2021. [ACL Anthology] [ArXiv]

1 Qualcomm AI Research (Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.)

Reference

If you find our work useful, please cite

@inproceedings{bondarenko-etal-2021-understanding,
    title = "Understanding and Overcoming the Challenges of Efficient Transformer Quantization",
    author = "Bondarenko, Yelysei  and
      Nagel, Markus  and
      Blankevoort, Tijmen",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.627",
    pages = "7947--7969",
    abstract = "Transformer-based architectures have become the de-facto standard models for a wide range of Natural Language Processing tasks. However, their memory footprint and high latency are prohibitive for efficient deployment and inference on resource-limited devices. In this work, we explore quantization for transformers. We show that transformers have unique quantization challenges {--} namely, high dynamic activation ranges that are difficult to represent with a low bit fixed-point format. We establish that these activations contain structured outliers in the residual connections that encourage specific attention patterns, such as attending to the special separator token. To combat these challenges, we present three solutions based on post-training quantization and quantization-aware training, each with a different set of compromises for accuracy, model size, and ease of use. In particular, we introduce a novel quantization scheme {--} per-embedding-group quantization. We demonstrate the effectiveness of our methods on the GLUE benchmark using BERT, establishing state-of-the-art results for post-training quantization. Finally, we show that transformer weights and embeddings can be quantized to ultra-low bit-widths, leading to significant memory savings with a minimum accuracy loss. Our source code is available at \url{https://github.com/qualcomm-ai-research/transformer-quantization}.",
}

How to install

First, ensure locale variables are set as follows:

export LC_ALL=C.UTF-8
export LANG=C.UTF-8

Second, make sure to have Python ≥3.6 (tested with Python 3.6.8) and ensure the latest version of pip (tested with 21.2.4):

pip install --upgrade --no-deps pip

Next, install PyTorch 1.4.0 with the appropriate CUDA version (tested with CUDA 10.0, CuDNN 7.6.3):

pip install torch==1.4.0 torchvision==0.5.0 -f https://download.pytorch.org/whl/torch_stable.html

Finally, install the remaining dependencies using pip:

pip install -r requirements.txt

To run the code, the project root directory needs to be added to your pythonpath:

export PYTHONPATH="${PYTHONPATH}:/path/to/this/dir"

Running experiments

The main run file to reproduce all experiments is main.py. It contains 4 commands to train and validate FP32 and quantized model:

Usage: main.py [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  train-baseline
  train-quantized
  validate-baseline
  validate-quantized

You can see the full list of options for each command using python main.py [COMMAND] --help.

A. FP32 fine-tuning

To start with, you need to get the fune-tuned model(s) for the GLUE task of interest. Example run command for fine-tuning:

python main.py train-baseline --cuda --save-model --model-name bert_base_uncased --task rte \
    --learning-rate 3e-05 --batch-size 8 --eval-batch-size 8 --num-epochs 3 --max-seq-length 128 \
    --seed 1000 --output-dir /path/to/output/dir/

You can also do it directly using HuggingFace library [examples]. In all experiments we used seeds 1000 - 1004 and reported the median score. The sample output directory looks as follows:

/path/to/output/dir
├── config.out
├── eval_results_rte.txt
├── final_score.txt
├── out
│   ├── config.json  # Huggingface model config
│   ├── pytorch_model.bin  # PyTorch model checkpoint
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json  # Huggingface tokenizer config
│   ├── training_args.bin
│   └── vocab.txt  # Vocabulary
└── tb_logs  # TensorBoard logs
    ├── 1632747625.1250594
    │   └── events.out.tfevents.*
    └── events.out.tfevents.*

For validation (both full-precision and quantized), it is assumed that these output directories with the fine-tuned checkpoints are aranged as follows (you can also use a subset of GLUE tasks):

/path/to/saved_models/
├── rte/rte_model_dir
│   ├── out
│   │   ├── config.json  # Huggingface model config
│   │   ├── pytorch_model.bin  # PyTorch model checkpoint
│   │   ├── tokenizer_config.json  # Huggingface tokenizer config
│   │   ├── vocab.txt  # Vocabulary
│   │   ├── (...)
├── cola/cola_model_dir
│   ├── out
│   │   ├── (...)
├── mnli/mnli_model_dir
│   ├── out
│   │   ├── (...)
├── mrpc/mrpc_model_dir
│   ├── out
│   │   ├── (...)
├── qnli/qnli_model_dir
│   ├── out
│   │   ├── (...)
├── qqp/qqp_model_dir
│   ├── out
│   │   ├── (...)
├── sst2/sst2_model_dir
│   ├── out
│   │   ├── (...)
└── stsb/stsb_model_dir
    ├── out
    │   ├── (...)

Note, that you have to create this file structure manually.

The model can then be validated as follows:

python main.py validate-baseline --eval-batch-size 32 --seed 1000 --model-name bert_base_uncased \
    --model-path /path/to/saved_models/ --task rte

You can also validate multiple or all checkpoints by specifying --task --task [...] or --task all, respectively.

B. Post-training quantization (PTQ)

1) Standard (naïve) W8A8 per-tensor PTQ / base run command for all PTQ experiments

python main.py validate-quantized --act-quant --weight-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --n-bits 8 --n-bits-act 8 --qmethod symmetric_uniform \
	--qmethod-act asymmetric_uniform --weight-quant-method MSE --weight-opt-method golden_section \
	--act-quant-method current_minmax --est-ranges-batch-size 1 --num-est-batches 1 \
	--quant-setup all

Note that the range estimation settings are slightly different for each task.

2) Mixed precision W8A{8,16} PTQ

Specify --quant-dict "{'y': 16, 'h': 16, 'x': 16}":

  • 'x': 16 will set FFN's input to 16-bit
  • 'h': 16 will set FFN's output to 16-bit
  • 'y': 16 will set FFN's residual sum to 16-bit

For STS-B regression task, you will need to specify --quant-dict "{'y': 16, 'h': 16, 'x': 16, 'P': 16, 'C': 16}" and --quant-setup MSE_logits, which will also quantize pooler and the final classifier to 16-bit and use MSE estimator for the output.

3) Per-embedding and per-embedding-group (PEG) activation quantization

  • --per-embd -- Per-embedding quantization for all activations
  • --per-groups [N_GROUPS] -- PEG quantization for all activations, no permutation
  • --per-groups [N_GROUPS] --per-groups-permute -- PEG quantization for all activations, apply range-based permutation (separate for each quantizer)
  • --quant-dict "{'y': 'ng6', 'h': 'ng6', 'x': 'ng6'}" -- PEG quantization using 6 groups for FFN's input, output and residual sum, no permutation
  • --quant-dict "{'y': 'ngp6', 'h': 'ngp6', 'x': 'ngp6'}" --per-groups-permute-shared-h -- PEG quantization using 6 groups for FFN's input, output and residual sum, apply range-based permutation (shared between tensors in the same layer)

4) W4A32 PTQ with AdaRound

python main.py validate-quantized --weight-quant --no-act-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --qmethod symmetric_uniform --qmethod-act asymmetric_uniform --n-bits 4 \
	--weight-quant-method MSE --weight-opt-method grid --num-candidates 100 --quant-setup all \
	--adaround all --adaround-num-samples 1024 --adaround-init range_estimator \
	--adaround-mode learned_hard_sigmoid --adaround-asym --adaround-iters 10000 \
	--adaround-act-quant no_act_quant

C. Quantization-aware training (QAT)

Base run command for QAT experiments (using W4A8 for example):

python main.py train-quantized --cuda --do-eval --logging-first-step --weight-quant --act-quant \
	--pad-to-max-length --learn-ranges --tqdm --batch-size 8 --seed 1000 \
	--model-name bert_base_uncased --learning-rate 5e-05 --num-epochs 6 --warmup-steps 186 \
	--weight-decay 0.0 --attn-dropout 0.0 --hidden-dropout 0.0 --max-seq-length 128 --n-bits 4 \
	--n-bits-act 8 --qmethod symmetric_uniform --qmethod-act asymmetric_uniform \
	--weight-quant-method MSE --weight-opt-method golden_section --act-quant-method current_minmax \
	--est-ranges-batch-size 16 --num-est-batches 1 --quant-setup all \
	--model-path /path/to/saved_models/rte/out --task rte --output-dir /path/to/qat_output/dir

Note that the settings are slightly different for each task (see Appendix).

To run mixed-precision QAT with 2-bit embeddings and 4-bit weights, add --quant-dict "{'Et': 2}".

Owner
An initiative of Qualcomm Technologies, Inc.
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022