The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

Overview

SPatchGAN: Official TensorFlow Implementation

Paper

  • "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation" (ICCV 2021)



Environment

  • CUDA 10.0
  • Python 3.6
  • pip install -r requirements.txt

Dataset

  • Dataset structure (dataset_struct='plain')
- dataset
    - <dataset_name>
        - trainA
            - 1.jpg
            - 2.jpg
            - ...
        - trainB
            - 3.jpg
            - 4.jpg
            - ...
        - testA
            - 5.jpg
            - 6.jpg
            - ...
        - testB
            - 7.jpg
            - 8.jpg
            - ...
  • Supported extensions: jpg, jpeg, png
  • An additional level of subdirectories is also supported by setting dataset_struct to 'tree', e.g.,
- trainA
    - subdir1
        - 1.jpg
        - 2.jpg
        - ...
    - subdir2
        - ...
  • Selfie-to-anime:

    • The dataset can be downloaded from U-GAT-IT.
  • Male-to-female and glasses removal:

    • The datasets can be downloaded from Council-GAN.
    • The images must be center cropped from 218x178 to 178x178 before training or testing.
    • For glasses removal, only the male images are used in the experiments in our paper. Note that the dataset from Council-GAN has already been split into two subdirectories, "1" for male and "2" for female.

Training

  • Set the suffix to anything descriptive, e.g., the date.
  • Selfie-to-Anime
python main.py --dataset selfie2anime --augment_type resize_crop --n_scales_dis 3 --suffix scale3_cyc20_20210831 --phase train
  • Male-to-Female
python main.py --dataset male2female --cyc_weight 10 --suffix cyc10_20210831 --phase train
  • Glasses Removal
python main.py --dataset glasses-male --cyc_weight 30 --suffix cyc30_20210831 --phase train
  • Find the output in ./output/SPatchGAN_<dataset_name>_<suffix>
  • The same command can be used to continue training based on the latest checkpoint.
  • For a new task, we recommend to use the default setting as the starting point, and adjust the hyperparameters according to the tips.
  • Check configs.py for all the hyperparameters.

Testing with the latest checkpoint

  • Replace --phase train with --phase test

Save a frozen model (.pb)

  • Replace --phase train with --phase freeze_graph
  • Find the saved frozen model in ./output/SPatchGAN_<dataset_name>_<suffix>/checkpoint/pb

Testing with the frozon model

cd frozen_model
python test_frozen_model.py --image <input_image_or_dir> --output_dir <output_dir> --model <frozen_model_path>

Pretrained Models

  • Download the pretrained models from google drive, and put them in the output directory.
  • You can test the checkpoints (in ./checkpoint) or the frozen models (in ./checkpoint/pb). Either way produces the same results.
  • The results generated by the pretrained models are slightly different from those in the paper, since we have rerun the training after code refactoring.
  • We set n_scales_dis to 3 for the pretrained selfie2anime model to further improve the performance. It was 4 in the paper. See more details in the tips.
  • We also provide the generated results of the last 100 test images (in ./gen, sorted by name, no cherry-picking) for the calibration purpose.

Other Implementations

Citation

@inproceedings{SPatchGAN2021,
  title={SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation},
  author={Xuning Shao and Weidong Zhang},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Acknowledgement

  • Our code is partially based on U-GAT-IT.
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022