aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Overview

Bayesian Methods for Hackers

Using Python and PyMC

The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chapters of slow, mathematical analysis. The typical text on Bayesian inference involves two to three chapters on probability theory, then enters what Bayesian inference is. Unfortunately, due to mathematical intractability of most Bayesian models, the reader is only shown simple, artificial examples. This can leave the user with a so-what feeling about Bayesian inference. In fact, this was the author's own prior opinion.

After some recent success of Bayesian methods in machine-learning competitions, I decided to investigate the subject again. Even with my mathematical background, it took me three straight-days of reading examples and trying to put the pieces together to understand the methods. There was simply not enough literature bridging theory to practice. The problem with my misunderstanding was the disconnect between Bayesian mathematics and probabilistic programming. That being said, I suffered then so the reader would not have to now. This book attempts to bridge the gap.

If Bayesian inference is the destination, then mathematical analysis is a particular path towards it. On the other hand, computing power is cheap enough that we can afford to take an alternate route via probabilistic programming. The latter path is much more useful, as it denies the necessity of mathematical intervention at each step, that is, we remove often-intractable mathematical analysis as a prerequisite to Bayesian inference. Simply put, this latter computational path proceeds via small intermediate jumps from beginning to end, where as the first path proceeds by enormous leaps, often landing far away from our target. Furthermore, without a strong mathematical background, the analysis required by the first path cannot even take place.

Bayesian Methods for Hackers is designed as an introduction to Bayesian inference from a computational/understanding-first, and mathematics-second, point of view. Of course as an introductory book, we can only leave it at that: an introductory book. For the mathematically trained, they may cure the curiosity this text generates with other texts designed with mathematical analysis in mind. For the enthusiast with less mathematical background, or one who is not interested in the mathematics but simply the practice of Bayesian methods, this text should be sufficient and entertaining.

The choice of PyMC as the probabilistic programming language is two-fold. As of this writing, there is currently no central resource for examples and explanations in the PyMC universe. The official documentation assumes prior knowledge of Bayesian inference and probabilistic programming. We hope this book encourages users at every level to look at PyMC. Secondly, with recent core developments and popularity of the scientific stack in Python, PyMC is likely to become a core component soon enough.

PyMC does have dependencies to run, namely NumPy and (optionally) SciPy. To not limit the user, the examples in this book will rely only on PyMC, NumPy, SciPy and Matplotlib.

Printed Version by Addison-Wesley

Bayesian Methods for Hackers is now available as a printed book! You can pick up a copy on Amazon. What are the differences between the online version and the printed version?

  • Additional Chapter on Bayesian A/B testing
  • Updated examples
  • Answers to the end of chapter questions
  • Additional explanation, and rewritten sections to aid the reader.

Contents

See the project homepage here for examples, too.

The below chapters are rendered via the nbviewer at nbviewer.jupyter.org/, and is read-only and rendered in real-time. Interactive notebooks + examples can be downloaded by cloning!

PyMC2

  • Prologue: Why we do it.

  • Chapter 1: Introduction to Bayesian Methods Introduction to the philosophy and practice of Bayesian methods and answering the question, "What is probabilistic programming?" Examples include:

    • Inferring human behaviour changes from text message rates
  • Chapter 2: A little more on PyMC We explore modeling Bayesian problems using Python's PyMC library through examples. How do we create Bayesian models? Examples include:

    • Detecting the frequency of cheating students, while avoiding liars
    • Calculating probabilities of the Challenger space-shuttle disaster
  • Chapter 3: Opening the Black Box of MCMC We discuss how MCMC operates and diagnostic tools. Examples include:

    • Bayesian clustering with mixture models
  • Chapter 4: The Greatest Theorem Never Told We explore an incredibly useful, and dangerous, theorem: The Law of Large Numbers. Examples include:

    • Exploring a Kaggle dataset and the pitfalls of naive analysis
    • How to sort Reddit comments from best to worst (not as easy as you think)
  • Chapter 5: Would you rather lose an arm or a leg? The introduction of loss functions and their (awesome) use in Bayesian methods. Examples include:

    • Solving the Price is Right's Showdown
    • Optimizing financial predictions
    • Winning solution to the Kaggle Dark World's competition
  • Chapter 6: Getting our prior-ities straight Probably the most important chapter. We draw on expert opinions to answer questions. Examples include:

    • Multi-Armed Bandits and the Bayesian Bandit solution.
    • What is the relationship between data sample size and prior?
    • Estimating financial unknowns using expert priors

    We explore useful tips to be objective in analysis as well as common pitfalls of priors.

PyMC3

  • Prologue: Why we do it.

  • Chapter 1: Introduction to Bayesian Methods Introduction to the philosophy and practice of Bayesian methods and answering the question, "What is probabilistic programming?" Examples include:

    • Inferring human behaviour changes from text message rates
  • Chapter 2: A little more on PyMC We explore modeling Bayesian problems using Python's PyMC library through examples. How do we create Bayesian models? Examples include:

    • Detecting the frequency of cheating students, while avoiding liars
    • Calculating probabilities of the Challenger space-shuttle disaster
  • Chapter 3: Opening the Black Box of MCMC We discuss how MCMC operates and diagnostic tools. Examples include:

    • Bayesian clustering with mixture models
  • Chapter 4: The Greatest Theorem Never Told We explore an incredibly useful, and dangerous, theorem: The Law of Large Numbers. Examples include:

    • Exploring a Kaggle dataset and the pitfalls of naive analysis
    • How to sort Reddit comments from best to worst (not as easy as you think)
  • Chapter 5: Would you rather lose an arm or a leg? The introduction of loss functions and their (awesome) use in Bayesian methods. Examples include:

    • Solving the Price is Right's Showdown
    • Optimizing financial predictions
    • Winning solution to the Kaggle Dark World's competition
  • Chapter 6: Getting our prior-ities straight Probably the most important chapter. We draw on expert opinions to answer questions. Examples include:

    • Multi-Armed Bandits and the Bayesian Bandit solution.
    • What is the relationship between data sample size and prior?
    • Estimating financial unknowns using expert priors

    We explore useful tips to be objective in analysis as well as common pitfalls of priors.

More questions about PyMC? Please post your modeling, convergence, or any other PyMC question on cross-validated, the statistics stack-exchange.

Using the book

The book can be read in three different ways, starting from most recommended to least recommended:

  1. The most recommended option is to clone the repository to download the .ipynb files to your local machine. If you have Jupyter installed, you can view the chapters in your browser plus edit and run the code provided (and try some practice questions). This is the preferred option to read this book, though it comes with some dependencies.

    • Jupyter is a requirement to view the ipynb files. It can be downloaded here. Jupyter notebooks can be run by (your-virtualenv) ~/path/to/the/book/Chapter1_Introduction $ jupyter notebook
    • For Linux users, you should not have a problem installing NumPy, SciPy, Matplotlib and PyMC. For Windows users, check out pre-compiled versions if you have difficulty.
    • In the styles/ directory are a number of files (.matplotlirc) that used to make things pretty. These are not only designed for the book, but they offer many improvements over the default settings of matplotlib.
  2. The second, preferred, option is to use the nbviewer.jupyter.org site, which display Jupyter notebooks in the browser (example). The contents are updated synchronously as commits are made to the book. You can use the Contents section above to link to the chapters.

  3. PDFs are the least-preferred method to read the book, as PDFs are static and non-interactive. If PDFs are desired, they can be created dynamically using the nbconvert utility.

Installation and configuration

If you would like to run the Jupyter notebooks locally, (option 1. above), you'll need to install the following:

  • Jupyter is a requirement to view the ipynb files. It can be downloaded here

  • Necessary packages are PyMC, NumPy, SciPy and Matplotlib.

  • New to Python or Jupyter, and help with the namespaces? Check out this answer.

  • In the styles/ directory are a number of files that are customized for the notebook. These are not only designed for the book, but they offer many improvements over the default settings of matplotlib and the Jupyter notebook. The in notebook style has not been finalized yet.

Development

This book has an unusual development design. The content is open-sourced, meaning anyone can be an author. Authors submit content or revisions using the GitHub interface.

How to contribute

What to contribute?

  • The current chapter list is not finalized. If you see something that is missing (MCMC, MAP, Bayesian networks, good prior choices, Potential classes etc.), feel free to start there.
  • Cleaning up Python code and making code more PyMC-esque
  • Giving better explanations
  • Spelling/grammar mistakes
  • Suggestions
  • Contributing to the Jupyter notebook styles

Commiting

  • All commits are welcome, even if they are minor ;)
  • If you are unfamiliar with Github, you can email me contributions to the email below.

Reviews

these are satirical, but real

"No, but it looks good" - John D. Cook

"I ... read this book ... I like it!" - Andrew Gelman

"This book is a godsend, and a direct refutation to that 'hmph! you don't know maths, piss off!' school of thought... The publishing model is so unusual. Not only is it open source but it relies on pull requests from anyone in order to progress the book. This is ingenious and heartening" - excited Reddit user

Contributions and Thanks

Thanks to all our contributing authors, including (in chronological order):

Authors
Cameron Davidson-Pilon Stef Gibson Vincent Ohprecio Lars Buitinck
Paul Magwene Matthias Bussonnier Jens Rantil y-p
Ethan Brown Jonathan Whitmore Mattia Rigotti Colby Lemon
Gustav W Delius Matthew Conlen Jim Radford Vannessa Sabino
Thomas Bratt Nisan Haramati Robert Grant Matthew Wampler-Doty
Yaroslav Halchenko Alex Garel Oleksandr Lysenko liori
ducky427 Pablo de Oliveira Castro sergeyfogelson Mattia Rigotti
Matt Bauman Andrew Duberstein Carsten Brandt Bob Jansen
ugurthemaster William Scott Min RK Bulwersator
elpres Augusto Hack Michael Feldmann Youki
Jens Rantil Kyle Meyer Eric Martin Inconditus
Kleptine Stuart Layton Antonino Ingargiola vsl9
Tom Christie bclow Simon Potter Garth Snyder
Daniel Beauchamp Philipp Singer gbenmartin Peadar Coyle

We would like to thank the Python community for building an amazing architecture. We would like to thank the statistics community for building an amazing architecture.

Similarly, the book is only possible because of the PyMC library. A big thanks to the core devs of PyMC: Chris Fonnesbeck, Anand Patil, David Huard and John Salvatier.

One final thanks. This book was generated by Jupyter Notebook, a wonderful tool for developing in Python. We thank the IPython/Jupyter community for developing the Notebook interface. All Jupyter notebook files are available for download on the GitHub repository.

Contact

Contact the main author, Cam Davidson-Pilon at [email protected] or @cmrndp

Imgur

Owner
Cameron Davidson-Pilon
Focusing on sustainable food. Former Director of Data Science @Shopify. Author of Bayesian Methods for Hackers and DataOrigami.
Cameron Davidson-Pilon
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022