Weight estimation in CT by multi atlas techniques

Related tags

Deep Learningmaweight
Overview

maweight

A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model selection for regression.

About

A detailed description of the implemented methodology can be found in the paper:

The package is used intensively in the case study of estimating weights of meat cuts from the CT images of rabbit in the repository: https://github.com/gykovacs/rabbit_ct_weights

If you use the package, please consider citing the paper:

@article{Csoka2021,
    author={\'Ad\'am Cs\'oka and Gy\"orgy Kov\'acs and Vir\'ag \'Acs and Zsolt Matics and Zsolt Gerencs\'er and Zsolt Szendr\"o and \"Ors Petneh\'azy and Imre Repa and Mariann Moizs and Tam\'as Donk\'o},
    title={Multi-atlas segmentation based estimation of weights from CT scans in farm animal imaging and its applications to rabbit breeding programs},
    year={2021}
}

Installation (Windows/Linux/Mac)

Prerequisites: elastix

Make sure the elastix package (https://elastix.lumc.nl/) is installed and available in the command line by issuing

> elastix

If elastix is properly installed, the following textual output should appear in the terminal:

Use "elastix --help" for information about elastix-usage.

Installing the `maweight` package

Clone the GitHub repository:

> git clone [email protected]:gykovacs/maweight.git

Navigate into the root directory of the repository:

> cd maweight

Install the code into the active Python environment

> pip install .

Usage examples

Segmentation by elastic registration

The main functionality of the package is registering image A to image B by elastic registration and then transforming a set of images C, D, ... to image B by the same transformation field. This functionality is implemented in the `register_and_transform` function:

from maweight import register_and_transform

A # path, ndarray or Nifti1Image - the atlas image
B # path, ndarray or Nifti1Image - the unseen image
[C, D] # paths, ndarrays or Nifti1Image objects - the atlas annotations for A, to be transformed to B
[C_transformed_path, D_transformed_path] # paths of the output images

register_and_transform(A, B, [C, D], [C_transformed_path, D_transformed_path])

Feature extraction

Given an image B and a set of atlases registered to it [C, D, ...], with corresponding labels [Clabel, Dlabel, ...] (for the labeling of features), feature extraction with bin boundaries [b0, b1, ...] can be executed in terms of the `extract_features_3d` function:

from maweight import extract_features_3d

B # path, ndarray or Nifti1Image - a base image to extract features from
registered_atlases # list of paths, ndarrays or Nivti1Image objects
labels # list of labels of the atlases (used to label the features)
bins= [0, 20, 40, 60, 80, 100] # bin boundaries for histogram feature extraction

features= extract_features_3d(B, registered_atlases, labels, bins)

Model selection

Given a dataset of features extracted from the ensemble of segmentations, one can carry out regression model fitting by the `model_selection` function:

from maweight import model_selection

features # pandas DataFrame of features
targets # pandas Series of corresponding weights

results= model_selection(features, targets)

By default, the model selection runs simulated annealing based feature ssubset and regressor parameter selection for kNN, linear, lasso, ridge and PLS regression and returns the summary of results in a pandas DataFrame.

Owner
György Kovács
György Kovács
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022