A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Related tags

Deep Learningcrysx_nn
Overview

Contributors Forks Stargazers Issues MIT License LinkedIn


crysx_nn

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.
Explore the docs »

View Demo · Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Features
  5. Roadmap
  6. Contributing
  7. License
  8. Contact
  9. Acknowledgments
  10. Citation

About The Project

Product Name Screen Shot

Neural networks are an integral part of machine learning. The project provides an easy-to-use, yet efficient implementation that can be used in your projects or for teaching/learning purposes.

The library is written in pure-python with some optimizations using numpy, opt_einsum, and numba when using CPU and cupy for CUDA support.

The goal was to create a framework that is efficient yet easy to understand, so that everyone can see and learn about what goes inside a neural network. After all, the project did spawn from a semester project on CP_IV: Machine Learning course at the University of Jena, Germany.

(back to top)

Built With

(back to top)

Getting Started

To get a local copy up and running follow these simple example steps.

Prerequisites

You need to have python3 installed along with pip.

Installation

There are many ways to install crysx_nn

  1. Install the release (stable) version from PyPi
    pip install crysx_nn
  2. Install the latest development version, by cloning the git repo and installing it. This requires you to have git installed.
    git clone https://github.com/manassharma07/crysx_nn.git
    cd crysx_nn
    pip install .
  3. Install the latest development version without git.
    pip install --upgrade https://github.com/manassharma07/crysx_nn/tarball/main

Check if the installation was successful by running python shell and trying to import the package

python3
>> import crysx_nn >>> crysx_nn.__version__ '0.1.0' >>> ">
Python 3.7.11 (default, Jul 27 2021, 07:03:16) 
[Clang 10.0.0 ] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import crysx_nn
>>> crysx_nn.__version__
'0.1.0'
>>> 

Finally download the example script (here) for simulating logic gates like AND, XOR, NAND, and OR, and try running it

python Simluating_logic_gates.py

(back to top)

Usage

The most important thing for using this library properly is to use 2D NumPy arrays for defining the inputs and exoected outputs (targets) for a network. 1D arrays for inputs and targets are not supported and will result in an error.

For example, let us try to simulate the logic gate AND. The AND gate takes two input bits and returns a single input bit. The bits can take a value of either 0 or 1. The AND gate returns 1 only if both the inputs are 1, otherwise it returns 0.

The truth table of the AND gate is as follows

x1 x2 output
0 0 0
0 1 0
1 0 0
1 1 1

The four possible set of inputs are

inputs = np.array([[0.,0.,1.,1.],[0.,1.,0.,1.]]).T.astype('float32')
print(inputs)
print(inputs.dtype) 

Output:

[[0. 0.]
 [0. 1.]
 [1. 0.]
 [1. 1.]]
float32

Similarly, set the corresponding four possible outputs as a 2D numpy array

# AND outputs
outputAND = np.array([0.,0.,0.,1.]) # 1D array
outputAND = np.asarray([outputAND]).T # 2D array
print('AND outputs\n', outputAND)

Output:

AND outputs
 [[0.]
 [0.]
 [0.]
 [1.]]

Next, we need to set some parameters of our Neural network

nInputs = 2 # No. of nodes in the input layer
neurons_per_layer = [3,1] # Neurons per layer (excluding the input layer)
activation_func_names = ['Sigmoid', 'Sigmoid']
nLayers = len(neurons_per_layer)
eeta = 0.5 # Learning rate
nEpochs=10**4 # For stochastic gradient descent
batchSize = 4 # No. of input samples to process at a time for optimization

For a better understanding, let us visualize it.

visualize(nInputs, neurons_per_layer, activation_func_names)

Output:

Now let us initialize the weights and biases. Weights and biases are provided as lists of 2D and 1D NumPy arrays, respectively (1 Numpy array for each layer). In our case, we have 2 layers (1 hidden+ 1 output), therefore, the list of Weights and Biases will have 2 NumPy arrays each.

# Initial guesses for weights
w1 = 0.30
w2 = 0.55
w3 = 0.20
w4 = 0.45
w5 = 0.50
w6 = 0.35
w7 = 0.15
w8 = 0.40
w9 = 0.25

# Initial guesses for biases
b1 = 0.60
b2 = 0.05

# need to use a list instead of a numpy array, since the 
#weight matrices at each layer are not of the same dimensions
weights = [] 
# Weights for layer 1 --> 2
weights.append(np.array([[w1,w4],[w2, w5], [w3, w6]]))
# Weights for layer 2 --> 3
weights.append(np.array([[w7, w8, w9]]))
# List of biases at each layer
biases = []
biases.append(np.array([b1,b1,b1]))
biases.append(np.array([b2]))

weightsOriginal = weights
biasesOriginal = biases

print('Weights matrices: ',weights)
print('Biases: ',biases)

Output:

Weights matrices:  [array([[0.3 , 0.45],
       [0.55, 0.5 ],
       [0.2 , 0.35]]), array([[0.15, 0.4 , 0.25]])]
Biases:  [array([0.6, 0.6, 0.6]), array([0.05])]

Finally it is time to train our neural network. We will use mean squared error (MSE) loss function as the metric of performance. Currently, only stochastic gradient descent is supported.

# Run optimization
optWeights, optBiases, errorPlot = nn_optimize_fast(inputs, outputAND, activation_func_names, nLayers, nEpochs=nEpochs, batchSize=batchSize, eeta=eeta, weights=weightsOriginal, biases=biasesOriginal, errorFunc=MSE_loss, gradErrorFunc=MSE_loss_grad,miniterEpoch=1,batchProgressBar=False,miniterBatch=100)

The function nn_optimize_fast returns the optimized weights and biases, as well as the error at each epoch of the optimization.

We can then plot the training loss at each epoch

# Plot the error vs epochs
plt.plot(errorPlot)
plt.yscale('log')
plt.show()

Output: For more examples, please refer to the Examples Section

CrysX-NN (crysx_nn) also provides CUDA support by using cupy versions of all the features ike activation functions, loss functions, neural network calculations, etc. Note: For small networks the Cupy versions may actually be slower than CPU versions. But the benefit becomes evident as you go beyond 1.5 Million parameters.

(back to top)

Features

  • Efficient implementations of activation functions and their gradients
    • Sigmoid, Sigmoid_grad
    • ReLU, ReLU_grad
    • Softmax, Softmax_grad
    • Softplus, Sofplus_grad
    • Tanh, Tanh_grad
    • Tanh_offset, Tanh_offset_grad
    • Identity, Identity_grad
  • Efficient implementations of loss functions and their gradients
    • Mean squared error
    • Binary cross entropy
  • Neural network optimization using
    • Stochastic Gradient Descent
  • Support for batched inputs, i.e., supplying a matrix of inputs where the collumns correspond to features and rows to the samples
  • Support for GPU through Cupy pip install cupy-cuda102 (Tested with CUDA 10.2)
  • JIT compiled functions when possible for efficiency

(back to top)

Roadmap

  • Weights and biases initialization
  • More activation functions
    • Identity, LeakyReLU, Tanh, etc.
  • More loss functions
    • categorical cross entropy, and others
  • Optimization algorithms apart from Stochastic Gradient Descent, like ADAM, RMSprop, etc.
  • Implement regularizers
  • Batch normalization
  • Dropout
  • Early stopping
  • A predict function that returns the output of the last layer and the loss/accuracy
  • Some metric functions, although there is no harm in using sklearn for that

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

Contact

Manas Sharma - @manassharma07 - [email protected]

Project Link: https://github.com/manassharma07/crysx_nn

Project Documentation: https://bragitoff.com

Blog: https://bragitoff.com

(back to top)

Acknowledgments

(back to top)

Citation

If you use this library and would like to cite it, you can use:

 M. Sharma, "CrysX-NN: Neural Network libray", 2021. [Online]. Available: https://github.com/manassharma07/crysx_nn. [Accessed: DD- Month- 20YY].

or:

@Misc{,
  author = {Manas Sharma},
  title  = {CrysX-NN: Neural Network libray},
  month  = december,
  year   = {2021},
  note   = {Online; accessed 
   
    },
  url    = {https://github.com/manassharma07/crysx_nn},
}

   

(back to top)

You might also like...
Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

CPU inference engine that delivers unprecedented performance for sparse models
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory bound workloads. It is focused on model deployment and scaling machine learning pipelines, fitting seamlessly into your existing deployments as an inference backend.

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

TorchPQ is a python library for Approximate Nearest Neighbor Search (ANNS) and Maximum Inner Product Search (MIPS) on GPU using Product Quantization (PQ) algorithm. [ICLR 2021]
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

Comments
  • NAN loss or loss gradient when using Binary Cross Entropy or Categorical Cross Entropy sometimes

    NAN loss or loss gradient when using Binary Cross Entropy or Categorical Cross Entropy sometimes

    This is a strange bug, where using a batch_size like 32 or smaller results in nan values in the gradient of loss calculations. But the bug is not there when using a larger batch size like 60-200.

    The bug was observed when training on MNIST dataset.

    Using ReLU (Hidden, size=256) and Softmax (Output, size=10) activation layers.

    bug 
    opened by manassharma07 2
  • Reduce the number of parameters required for `nn_optimize` function

    Reduce the number of parameters required for `nn_optimize` function

    Add some defaults to parameters, it could even be None and then if the value of a parameters remains None, i.e., the user didn't provide them, then use our default values.

    For example,

    • [ ] for batchSize we can use: min(32,nSamples)

    • [ ] for weights and biases we can use an initialisation function.

    enhancement 
    opened by manassharma07 2
Releases(v_0.1.7)
  • v_0.1.7(Jan 16, 2022)

    FInalized the example for MNIST and MNIST_Plus.

    Added the ability to calculate accuracy during training as well as during prediction.

    Added confusion matrix calculation and visualization functions in utils.py.

    Source code(tar.gz)
    Source code(zip)
  • v_0.1.6(Jan 2, 2022)

    1. Both forward feed and back propagation are now significantly faster, for both NumPy and Cupy versions.
    2. Furthermore, several more activation and loss functions are also available now.
    Source code(tar.gz)
    Source code(zip)
  • v_0.1.5(Dec 27, 2021)

    Support for CUDA is here via Cupy.

    Slower than CPU for smaller networks but the benefits are very evident for larger networks with more than 1.5 Million parameters.

    Tested on

    • XPS i7 11800H + 3050 Ti,
    • Google Colab K80
    • Kaggle
    Source code(tar.gz)
    Source code(zip)
  • v_0.1.2(Dec 25, 2021)

  • v_0.1.1(Dec 25, 2021)

  • v_0.0.1(Dec 25, 2021)

Owner
Manas Sharma
Physicist
Manas Sharma
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022