AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

Overview

AutoML for Image Semantic Segmentation

Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-performs that of the original paper.

Following the popular trend of modern CNN architectures having a two level hierarchy. Auto-Deeplab forms a dual level search space, searching for optimal network and cell architecture. network and cell level search space

Auto-Deeplab acheives a better performance while minimizing the size of the final model. model results

Our results:79.8 miou with Autodeeplab-M, train for 4000epochs and batch_size=16, about 800K iters

Our Search implementation currently achieves BETTER results than that of the authors in the original AutoDeeplab paper. Awesome!

Search results from the auto-deeplab paper which achieve 35% after 40 epochs of searching:
paper mIOU
VS our search results which acheive 37% after 40 epochs of searching:
our mIOU:


Training Proceedure

All together there are 3 stages:

  1. Architecture Search - Here you will train one large relaxed architecture that is meant to represent many discreet smaller architectures woven together.

  2. Decode - Once you've finished the architecture search, load your large relaxed architecture and decode it to find your optimal architecture.

  3. Re-train - Once you have a decoded and poses a final description of your optimal model, use it to build and train your new optimal model



Hardware Requirement

  • For architecture search, you need at least an 15G GPU, or two 11G gpus(in this way, global pooling in aspp is banned, not recommended)

  • For retraining autodeeplab-M or autodeeplab-S, you need at least n more than 11G gpus to re-train with batch size 2n without distributed

  • For retraining autodeeplab-L, you need at least n more than 11G gpus to re-train with batch size 2n with distributed

Architecture Search

Begin Architecture Search

Start Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes

Resume Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Re-train

Now that you're done training the search algorithm, it's time to decode the search space and find your new optimal architecture. After that just build your new model and begin training it

Load and Decode

CUDA_VISIBLE_DEVICES=0 python decode_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Retrain

Train without distributed

python train.py

Train with distributed

CUDA_VISIBLE_DEVICES=0,1,2,···,n python -m torch.distributed.launch --nproc_per_node=n train_distributed.py  

Result models

We provided models after search and retrain [baidu drive (passwd: xm9z)] [google drive]

Requirements

  • Pytorch version 1.1

  • Python 3

  • tensorboardX

  • torchvision

  • pycocotools

  • tqdm

  • numpy

  • pandas

  • apex

References

[1] : Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

[2] : Thanks for jfzhang's deeplab v3+ implemention of pytorch

[3] : Thanks for MenghaoGuo's autodeeplab model implemention

[4] : Thanks for CoinCheung's deeplab v3+ implemention of pytorch

[5] : Thanks for chenxi's deeplab v3 implemention of pytorch

TODO

  • Retrain our search model

  • adding support for other datasets(e.g. VOC, ADE20K, COCO and so on.)

Owner
AI Necromancer
WeChat: BuffaloNoam; Line: buffalonoam; WhatsApp: +972524226459
AI Necromancer
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022