AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

Overview

AutoML for Image Semantic Segmentation

Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-performs that of the original paper.

Following the popular trend of modern CNN architectures having a two level hierarchy. Auto-Deeplab forms a dual level search space, searching for optimal network and cell architecture. network and cell level search space

Auto-Deeplab acheives a better performance while minimizing the size of the final model. model results

Our results:79.8 miou with Autodeeplab-M, train for 4000epochs and batch_size=16, about 800K iters

Our Search implementation currently achieves BETTER results than that of the authors in the original AutoDeeplab paper. Awesome!

Search results from the auto-deeplab paper which achieve 35% after 40 epochs of searching:
paper mIOU
VS our search results which acheive 37% after 40 epochs of searching:
our mIOU:


Training Proceedure

All together there are 3 stages:

  1. Architecture Search - Here you will train one large relaxed architecture that is meant to represent many discreet smaller architectures woven together.

  2. Decode - Once you've finished the architecture search, load your large relaxed architecture and decode it to find your optimal architecture.

  3. Re-train - Once you have a decoded and poses a final description of your optimal model, use it to build and train your new optimal model



Hardware Requirement

  • For architecture search, you need at least an 15G GPU, or two 11G gpus(in this way, global pooling in aspp is banned, not recommended)

  • For retraining autodeeplab-M or autodeeplab-S, you need at least n more than 11G gpus to re-train with batch size 2n without distributed

  • For retraining autodeeplab-L, you need at least n more than 11G gpus to re-train with batch size 2n with distributed

Architecture Search

Begin Architecture Search

Start Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes

Resume Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Re-train

Now that you're done training the search algorithm, it's time to decode the search space and find your new optimal architecture. After that just build your new model and begin training it

Load and Decode

CUDA_VISIBLE_DEVICES=0 python decode_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Retrain

Train without distributed

python train.py

Train with distributed

CUDA_VISIBLE_DEVICES=0,1,2,···,n python -m torch.distributed.launch --nproc_per_node=n train_distributed.py  

Result models

We provided models after search and retrain [baidu drive (passwd: xm9z)] [google drive]

Requirements

  • Pytorch version 1.1

  • Python 3

  • tensorboardX

  • torchvision

  • pycocotools

  • tqdm

  • numpy

  • pandas

  • apex

References

[1] : Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

[2] : Thanks for jfzhang's deeplab v3+ implemention of pytorch

[3] : Thanks for MenghaoGuo's autodeeplab model implemention

[4] : Thanks for CoinCheung's deeplab v3+ implemention of pytorch

[5] : Thanks for chenxi's deeplab v3 implemention of pytorch

TODO

  • Retrain our search model

  • adding support for other datasets(e.g. VOC, ADE20K, COCO and so on.)

Owner
AI Necromancer
WeChat: BuffaloNoam; Line: buffalonoam; WhatsApp: +972524226459
AI Necromancer
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022