AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

Overview

AutoML for Image Semantic Segmentation

Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-performs that of the original paper.

Following the popular trend of modern CNN architectures having a two level hierarchy. Auto-Deeplab forms a dual level search space, searching for optimal network and cell architecture. network and cell level search space

Auto-Deeplab acheives a better performance while minimizing the size of the final model. model results

Our results:79.8 miou with Autodeeplab-M, train for 4000epochs and batch_size=16, about 800K iters

Our Search implementation currently achieves BETTER results than that of the authors in the original AutoDeeplab paper. Awesome!

Search results from the auto-deeplab paper which achieve 35% after 40 epochs of searching:
paper mIOU
VS our search results which acheive 37% after 40 epochs of searching:
our mIOU:


Training Proceedure

All together there are 3 stages:

  1. Architecture Search - Here you will train one large relaxed architecture that is meant to represent many discreet smaller architectures woven together.

  2. Decode - Once you've finished the architecture search, load your large relaxed architecture and decode it to find your optimal architecture.

  3. Re-train - Once you have a decoded and poses a final description of your optimal model, use it to build and train your new optimal model



Hardware Requirement

  • For architecture search, you need at least an 15G GPU, or two 11G gpus(in this way, global pooling in aspp is banned, not recommended)

  • For retraining autodeeplab-M or autodeeplab-S, you need at least n more than 11G gpus to re-train with batch size 2n without distributed

  • For retraining autodeeplab-L, you need at least n more than 11G gpus to re-train with batch size 2n with distributed

Architecture Search

Begin Architecture Search

Start Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes

Resume Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Re-train

Now that you're done training the search algorithm, it's time to decode the search space and find your new optimal architecture. After that just build your new model and begin training it

Load and Decode

CUDA_VISIBLE_DEVICES=0 python decode_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Retrain

Train without distributed

python train.py

Train with distributed

CUDA_VISIBLE_DEVICES=0,1,2,···,n python -m torch.distributed.launch --nproc_per_node=n train_distributed.py  

Result models

We provided models after search and retrain [baidu drive (passwd: xm9z)] [google drive]

Requirements

  • Pytorch version 1.1

  • Python 3

  • tensorboardX

  • torchvision

  • pycocotools

  • tqdm

  • numpy

  • pandas

  • apex

References

[1] : Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

[2] : Thanks for jfzhang's deeplab v3+ implemention of pytorch

[3] : Thanks for MenghaoGuo's autodeeplab model implemention

[4] : Thanks for CoinCheung's deeplab v3+ implemention of pytorch

[5] : Thanks for chenxi's deeplab v3 implemention of pytorch

TODO

  • Retrain our search model

  • adding support for other datasets(e.g. VOC, ADE20K, COCO and so on.)

Owner
AI Necromancer
WeChat: BuffaloNoam; Line: buffalonoam; WhatsApp: +972524226459
AI Necromancer
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022