AOT (Associating Objects with Transformers) in PyTorch

Overview

AOT (Associating Objects with Transformers) in PyTorch

A modular reference PyTorch implementation of Associating Objects with Transformers for Video Object Segmentation (NIPS 2021). [paper]

alt text

alt text

Highlights

  • High performance: up to 85.5% (R50-AOTL) on YouTube-VOS 2018 and 82.1% (SwinB-AOTL) on DAVIS-2017 Test-dev under standard settings.
  • High efficiency: up to 51fps (AOTT) on DAVIS-2017 (480p) even with 10 objects and 41fps on YouTube-VOS (1.3x480p). AOT can process multiple objects (less than a pre-defined number, 10 in default) as efficiently as processing a single object. This project also supports inferring any number of objects together within a video by automatic separation and aggregation.
  • Multi-GPU training and inference
  • Mixed precision training and inference
  • Test-time augmentation: multi-scale and flipping augmentations are supported.

TODO

  • Code documentation
  • Demo tool
  • Adding your own dataset

Requirements

  • Python3
  • pytorch >= 1.7.0 and torchvision
  • opencv-python
  • Pillow

Optional (for better efficiency):

  • Pytorch Correlation (recommend to install from source instead of using pip)

Demo

Coming

Model Zoo and Results

Pre-trained models and corresponding results reproduced by this project can be found in MODEL_ZOO.md.

Getting Started

  1. Prepare datasets:

    Please follow the below instruction to prepare datasets in each correspondding folder.

    • Static

      datasets/Static: pre-training dataset with static images. A guidance can be found in AFB-URR.

    • YouTube-VOS

      A commonly-used large-scale VOS dataset.

      datasets/YTB/2019: version 2019, download link. train is required for training. valid (6fps) and valid_all_frames (30fps, optional) are used for evaluation.

      datasets/YTB/2018: version 2018, download link. Only valid (6fps) and valid_all_frames (30fps, optional) are required for this project and used for evaluation.

    • DAVIS

      A commonly-used small-scale VOS dataset.

      datasets/DAVIS: TrainVal (480p) contains both the training and validation split. Test-Dev (480p) contains the Test-dev split. The full-resolution version is also supported for training and evluation but not required.

  2. Prepare ImageNet pre-trained encoders

    Select and download below checkpoints into pretrain_models:

    The current default training configs are not optimized for encoders larger than ResNet-50. If you want to use larger encoders, we recommond to early stop the main-training stage at 80,000 iteration (100,000 in default) to avoid over-fitting on the seen classes of YouTube-VOS.

  3. Training and Evaluation

    The example script will train AOTT with 2 stages using 4 GPUs and auto-mixed precision (--amp). The first stage is a pre-training stage using Static dataset, and the second stage is main-training stage, which uses both YouTube-VOS 2019 train and DAVIS-2017 train for training, resulting in a model can generalize to different domains (YouTube-VOS and DAVIS) and different frame rates (6fps, 24fps, and 30fps).

    Notably, you can use only the YouTube-VOS 2019 train split in the second stage by changing pre_ytb_dav to pre_ytb, which leads to better YouTube-VOS performance on unseen classes. Besides, if you don't want to do the first stage, you can start the training from stage ytb, but the performance will drop about 1~2% absolutely.

    After the training is finished, the example script will evaluate the model on YouTube-VOS and DAVIS, and the results will be packed into Zip files. For calculating scores, please use offical YouTube-VOS servers (2018 server and 2019 server) and offical DAVIS toolkit.

Adding your own dataset

Coming

Troubleshooting

Waiting

Citations

Please consider citing the related paper(s) in your publications if it helps your research.

@inproceedings{yang2021aot,
  title={Associating Objects with Transformers for Video Object Segmentation},
  author={Yang, Zongxin and Wei, Yunchao and Yang, Yi},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

License

This project is released under the BSD-3-Clause license. See LICENSE for additional details.

Owner
CS graduate student, Zhejiang University.
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022