PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Related tags

Deep LearningABL
Overview

Anti-Backdoor Learning

PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Python 3.6 Pytorch 1.10 CUDA 10.0 License CC BY-NC

Check the unlearning effect of ABL with 1% isolated backdoor images:

An Example with Pretrained Model

Pretrained backdoored model: gridTrigger WRN-16-1, target label 0, pretrained weights: ./weight/backdoored_model.

Run the following command will show the effect of unlearning:

$ python quick_unlearning_demo.py 

The training logs are shown in below. We can clearly see how effective and efficient of our ABL, with using only 1% (i.e. 500 examples) isolated backdoored images, can successfully decrease the ASR of backdoored WRN-16-1 from 99.98% to near 0% (almost no drop of CA) on CIFAR-10.

Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
0,82.77777777777777,99.9888888888889,0.9145596397187975,0.0007119161817762587
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
1,82.97777777777777,47.13333333333333,0.9546798907385932,4.189897534688313
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
2,82.46666666666667,5.766666666666667,1.034722186088562,15.361101960923937
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
3,82.15555555555555,1.5222222222222221,1.0855470676422119,22.175255742390952
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
4,82.0111111111111,0.7111111111111111,1.1183592330084906,26.754894670274524
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
5,81.86666666666666,0.4777777777777778,1.1441074348025853,30.429284422132703

The unlearning model will be saved at the path 'weight/ABL_results/ .tar'

Please carefully read the quick_unlearning_demo.py , then change the default parameters for your experiment.


Prepare Poisoning Data

We have provided a DatasetBD Class in data_loader.py for generating training set of different backdoor attacks.

The use of this code to create a poisoned data is look like this:

from data_loader import *
    if opt.load_fixed_data:
        # load the fixed poisoned data of numpy format, e.g. Dynamic, FC, DFST attacks etc. 
        # Note that the load data type is a pytorch tensor
        poisoned_data = np.load(opt.poisoned_data_path, allow_pickle=True)
        poisoned_data_loader = DataLoader(dataset=poisoned_data,
                                            batch_size=opt.batch_size,
                                            shuffle=True,
                                            )
    else:
        poisoned_data, poisoned_data_loader = get_backdoor_loader(opt)

    test_clean_loader, test_bad_loader = get_test_loader(opt)

However, for the other attacks such as Dynamic, DFTS, FC, etc. It is not easy to contain them into the get_backdoor_loader . So the much elegant way is to create a local fixed poisoning data of these attacks by using the demo code create_poisoned_data.py, and then load this poisoned data by set the opt.loader_fixed_data == True.

We provide a demo of how to create poisoning data of dynamic attack in the create_backdoor_data dictionary.

Please carefully read the create_poisoned_data.py and get_backdoor_loader, then change the parameters for your experiment.

ABL Stage One: Backdoor Isolation

To obtain the 1% isolation data and isolation model, you can easily run command:

$ python backdoor_isolation.py 

After that, you can get a isolation model and then use it to isolate 1% poisoned data of the lowest training loss. The 1% poisoned data will be saved in the path 'isolation_data' and 'weight/isolation_model' respectively.

Please check more details of our experimental settings in section 4 and Appendix A of paper, then change the parameters in config.py for your experiment.

ABL Stage Two: Backdoor Unlearning

With the 1% isolation backdoor set and a isolation model, we can then continue with the later training of unlearning by running the code:

$ python backdoor_unlearning.py 

Note that at this stage, the backdoor has already been learned by the isolation model. In order to further improve clean accuracy of isolation model, we finetuning the model some epochs before backdoor unlearning. If you want directly to see unlearning result, you can select to skip the finetuning of the isolation model by setting argument of opt.finetuning_ascent_model== False .

The final results of unlearning will be saved in the path ABL_results, and logs . Please carefully read the backdoor_unlearning.py and config.py, then change the parameters for your experiment.

Leader-board of training backdoor-free model on Poisoned dataset

  • Note: Here, we create a leader board for anti-backdoor learning that we want to encourage you to submit your results of training a backdoor-free model on a backdoored CIFAR-10 dataset under our defense setting.
  • Defense setting: We assume the backdoor adversary has pre-generated a set of backdoor examples and has successfully injected these examples into the training dataset. We also assume the defender has full control over the training process but has no prior knowledge of the proportion of backdoor examples in the given dataset. The defender’s goal is to train a model on the given dataset (clean or poisoned) that is as good as models trained on purely clean data.
  • We show our ABL results against BadNets in the table bellow as a competition reference, and we welcome you to submit your paper results to complement this table!

Update News: this result is updated in 2021/10/21

# Paper Venue Poisoning data Architecture Attack type ASR (Defense) CA (Defense)
1 ABL NeurIPS 2021 available WRN-16-1 BadNets 3.04 86.11
2
3
4
5
6
7
8

Source of Backdoor Attacks

Attacks

CL: Clean-label backdoor attacks

SIG: A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning

Barni, M., Kallas, K., & Tondi, B. (2019). > A new Backdoor Attack in CNNs by training set corruption without label poisoning. > arXiv preprint arXiv:1902.11237 superimposed sinusoidal backdoor signal with default parameters """ alpha = 0.2 img = np.float32(img) pattern = np.zeros_like(img) m = pattern.shape[1] for i in range(img.shape[0]): for j in range(img.shape[1]): for k in range(img.shape[2]): pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m) img = alpha * np.uint32(img) + (1 - alpha) * pattern img = np.uint8(np.clip(img, 0, 255)) # if debug: # cv2.imshow('planted image', img) # cv2.waitKey() return img ">
## reference code
def plant_sin_trigger(img, delta=20, f=6, debug=False):
    """
    Implement paper:
    > Barni, M., Kallas, K., & Tondi, B. (2019).
    > A new Backdoor Attack in CNNs by training set corruption without label poisoning.
    > arXiv preprint arXiv:1902.11237
    superimposed sinusoidal backdoor signal with default parameters
    """
    alpha = 0.2
    img = np.float32(img)
    pattern = np.zeros_like(img)
    m = pattern.shape[1]
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            for k in range(img.shape[2]):
                pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m)

    img = alpha * np.uint32(img) + (1 - alpha) * pattern
    img = np.uint8(np.clip(img, 0, 255))

    #     if debug:
    #         cv2.imshow('planted image', img)
    #         cv2.waitKey()

    return img

Dynamic: Input-aware Dynamic Backdoor Attack

FC: Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks

DFST: Deep Feature Space Trojan Attack of Neural Networks by Controlled Detoxification

LBA: Latent Backdoor Attacks on Deep Neural Networks

CBA: Composite Backdoor Attack for Deep Neural Network by Mixing Existing Benign Features

Feature space attack benchmark

Note: This repository is the official implementation of Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks.

Library

Note: TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning.

Backdoors 101 — is a PyTorch framework for state-of-the-art backdoor defenses and attacks on deep learning models.

poisoning Feature space attack benchmark A unified benchmark problem for data poisoning attacks

References

If you find this code is useful for your research, please cite our paper

@inproceedings{li2021anti,
  title={Anti-Backdoor Learning: Training Clean Models on Poisoned Data},
  author={Li, Yige and Lyu, Xixiang and Koren, Nodens and Lyu, Lingjuan and Li, Bo and Ma, Xingjun},
  booktitle={NeurIPS},
  year={2021}
}

Contacts

If you have any questions, leave a message below with GitHub.

Owner
Yige-Li
CV&DeepLearning&Security
Yige-Li
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022