PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Related tags

Deep LearningABL
Overview

Anti-Backdoor Learning

PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Python 3.6 Pytorch 1.10 CUDA 10.0 License CC BY-NC

Check the unlearning effect of ABL with 1% isolated backdoor images:

An Example with Pretrained Model

Pretrained backdoored model: gridTrigger WRN-16-1, target label 0, pretrained weights: ./weight/backdoored_model.

Run the following command will show the effect of unlearning:

$ python quick_unlearning_demo.py 

The training logs are shown in below. We can clearly see how effective and efficient of our ABL, with using only 1% (i.e. 500 examples) isolated backdoored images, can successfully decrease the ASR of backdoored WRN-16-1 from 99.98% to near 0% (almost no drop of CA) on CIFAR-10.

Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
0,82.77777777777777,99.9888888888889,0.9145596397187975,0.0007119161817762587
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
1,82.97777777777777,47.13333333333333,0.9546798907385932,4.189897534688313
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
2,82.46666666666667,5.766666666666667,1.034722186088562,15.361101960923937
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
3,82.15555555555555,1.5222222222222221,1.0855470676422119,22.175255742390952
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
4,82.0111111111111,0.7111111111111111,1.1183592330084906,26.754894670274524
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
5,81.86666666666666,0.4777777777777778,1.1441074348025853,30.429284422132703

The unlearning model will be saved at the path 'weight/ABL_results/ .tar'

Please carefully read the quick_unlearning_demo.py , then change the default parameters for your experiment.


Prepare Poisoning Data

We have provided a DatasetBD Class in data_loader.py for generating training set of different backdoor attacks.

The use of this code to create a poisoned data is look like this:

from data_loader import *
    if opt.load_fixed_data:
        # load the fixed poisoned data of numpy format, e.g. Dynamic, FC, DFST attacks etc. 
        # Note that the load data type is a pytorch tensor
        poisoned_data = np.load(opt.poisoned_data_path, allow_pickle=True)
        poisoned_data_loader = DataLoader(dataset=poisoned_data,
                                            batch_size=opt.batch_size,
                                            shuffle=True,
                                            )
    else:
        poisoned_data, poisoned_data_loader = get_backdoor_loader(opt)

    test_clean_loader, test_bad_loader = get_test_loader(opt)

However, for the other attacks such as Dynamic, DFTS, FC, etc. It is not easy to contain them into the get_backdoor_loader . So the much elegant way is to create a local fixed poisoning data of these attacks by using the demo code create_poisoned_data.py, and then load this poisoned data by set the opt.loader_fixed_data == True.

We provide a demo of how to create poisoning data of dynamic attack in the create_backdoor_data dictionary.

Please carefully read the create_poisoned_data.py and get_backdoor_loader, then change the parameters for your experiment.

ABL Stage One: Backdoor Isolation

To obtain the 1% isolation data and isolation model, you can easily run command:

$ python backdoor_isolation.py 

After that, you can get a isolation model and then use it to isolate 1% poisoned data of the lowest training loss. The 1% poisoned data will be saved in the path 'isolation_data' and 'weight/isolation_model' respectively.

Please check more details of our experimental settings in section 4 and Appendix A of paper, then change the parameters in config.py for your experiment.

ABL Stage Two: Backdoor Unlearning

With the 1% isolation backdoor set and a isolation model, we can then continue with the later training of unlearning by running the code:

$ python backdoor_unlearning.py 

Note that at this stage, the backdoor has already been learned by the isolation model. In order to further improve clean accuracy of isolation model, we finetuning the model some epochs before backdoor unlearning. If you want directly to see unlearning result, you can select to skip the finetuning of the isolation model by setting argument of opt.finetuning_ascent_model== False .

The final results of unlearning will be saved in the path ABL_results, and logs . Please carefully read the backdoor_unlearning.py and config.py, then change the parameters for your experiment.

Leader-board of training backdoor-free model on Poisoned dataset

  • Note: Here, we create a leader board for anti-backdoor learning that we want to encourage you to submit your results of training a backdoor-free model on a backdoored CIFAR-10 dataset under our defense setting.
  • Defense setting: We assume the backdoor adversary has pre-generated a set of backdoor examples and has successfully injected these examples into the training dataset. We also assume the defender has full control over the training process but has no prior knowledge of the proportion of backdoor examples in the given dataset. The defender’s goal is to train a model on the given dataset (clean or poisoned) that is as good as models trained on purely clean data.
  • We show our ABL results against BadNets in the table bellow as a competition reference, and we welcome you to submit your paper results to complement this table!

Update News: this result is updated in 2021/10/21

# Paper Venue Poisoning data Architecture Attack type ASR (Defense) CA (Defense)
1 ABL NeurIPS 2021 available WRN-16-1 BadNets 3.04 86.11
2
3
4
5
6
7
8

Source of Backdoor Attacks

Attacks

CL: Clean-label backdoor attacks

SIG: A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning

Barni, M., Kallas, K., & Tondi, B. (2019). > A new Backdoor Attack in CNNs by training set corruption without label poisoning. > arXiv preprint arXiv:1902.11237 superimposed sinusoidal backdoor signal with default parameters """ alpha = 0.2 img = np.float32(img) pattern = np.zeros_like(img) m = pattern.shape[1] for i in range(img.shape[0]): for j in range(img.shape[1]): for k in range(img.shape[2]): pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m) img = alpha * np.uint32(img) + (1 - alpha) * pattern img = np.uint8(np.clip(img, 0, 255)) # if debug: # cv2.imshow('planted image', img) # cv2.waitKey() return img ">
## reference code
def plant_sin_trigger(img, delta=20, f=6, debug=False):
    """
    Implement paper:
    > Barni, M., Kallas, K., & Tondi, B. (2019).
    > A new Backdoor Attack in CNNs by training set corruption without label poisoning.
    > arXiv preprint arXiv:1902.11237
    superimposed sinusoidal backdoor signal with default parameters
    """
    alpha = 0.2
    img = np.float32(img)
    pattern = np.zeros_like(img)
    m = pattern.shape[1]
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            for k in range(img.shape[2]):
                pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m)

    img = alpha * np.uint32(img) + (1 - alpha) * pattern
    img = np.uint8(np.clip(img, 0, 255))

    #     if debug:
    #         cv2.imshow('planted image', img)
    #         cv2.waitKey()

    return img

Dynamic: Input-aware Dynamic Backdoor Attack

FC: Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks

DFST: Deep Feature Space Trojan Attack of Neural Networks by Controlled Detoxification

LBA: Latent Backdoor Attacks on Deep Neural Networks

CBA: Composite Backdoor Attack for Deep Neural Network by Mixing Existing Benign Features

Feature space attack benchmark

Note: This repository is the official implementation of Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks.

Library

Note: TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning.

Backdoors 101 — is a PyTorch framework for state-of-the-art backdoor defenses and attacks on deep learning models.

poisoning Feature space attack benchmark A unified benchmark problem for data poisoning attacks

References

If you find this code is useful for your research, please cite our paper

@inproceedings{li2021anti,
  title={Anti-Backdoor Learning: Training Clean Models on Poisoned Data},
  author={Li, Yige and Lyu, Xixiang and Koren, Nodens and Lyu, Lingjuan and Li, Bo and Ma, Xingjun},
  booktitle={NeurIPS},
  year={2021}
}

Contacts

If you have any questions, leave a message below with GitHub.

Owner
Yige-Li
CV&DeepLearning&Security
Yige-Li
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
yufan 81 Dec 08, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
End-to-end image segmentation kit based on PaddlePaddle.

English | 简体中文 PaddleSeg PaddleSeg has released the new version including the following features: Our team won the 6.2k Jan 02, 2023

Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022