coldcuts is an R package to automatically generate and plot segmentation drawings in R

Overview

R-CMD-check

coldcuts

coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays.

The name is inspired by one of Italy's best products.

🎓 You can find the documentation and a tutorial to get started at the package's page: https://langleylab.github.io/coldcuts

🗂 You can find additional segmentation files, ontologies and other information at https://langleylab.github.io/coldcuts/articles/segmentations.html

📄 You can read the preprint on arXiv at https://arxiv.org/abs/2201.10116

Citation

If you use coldcuts in your research, cite the preprint:

Giuseppe D'Agostino and Sarah Langley, Automated brain parcellation rendering and visualization in R with coldcuts, arXiv 2022, arXiv:2201.10116

Motivation

When dealing with neuroimaging data, or any other type of numerical data derived from brain tissues, it is important to situate it in its anatomical and structural context. Various authors provide parcellations or segmentations of the brain, according to their best interpretation of which functional and anatomical boundaries make sense for our understanding of the brain. There are several stand-alone tools that allow to visualize and manipulate segmentations. However, neuroimaging data, together with other functional data such as transcriptomics, is often manipulated in a statistical programming language such as R which does not have trivial implementations for the visualization of segmentations.

To bridge this gap, some R packages have been recently published:

  • ggseg by Athanasia Mo Mowinckel and Didac Vidal-Piñeiro
  • cerebroViz by Ethan Bahl, Tanner Koomar, and Jacob J Michaelson
  • fsbrain by Tim Schäfer and Christine Ecker

ggseg and cerebroviz offer 2D (and 3D in the case of ggseg3d) visualizations of human brain segmentations, with the possibility of integration with external datasets. These segmentations are manually curated, which means that new datasets must be manually inserted, and they are limited to the human brain in scope. ggseg in particular has made available several segmentations of human cortical surface atlases. fsbrain focuses on 3D visualization of human MRI data with external data integration and visualization in both native space and transformed spaces. It does not depend on manually curated datastes (beyond segmentations).

While these tools provide a wealth of beautiful visualization interfaces, we felt the need to implement a tool to systematically create 2D (and potentially 3D) objects that are easily shared and manipulated in R, with the addition of labels, external datasets and simple operations such as subsetting and projecting, with minimal need for manual curation and without limiting ourselves to a particular species.

Thus, coldcuts is our attempt at bridging the gap between imaging/high throughput brain data and R through data visualization.

Installing the package

⬇️ You can install this package using devtools::install_github():

devtools::install_github("langleylab/coldcuts")

Nota bene: coldcuts uses smoothr to smooth 2D polygons. This package requires the installation of terra which has some system dependencies for spatial data, such as GDAL, GEOS and PROJ that can sometimes be difficult to install, especially in machines on which you do not have admin rights.

One possible workaround when you do not have admin rights is to use conda virtual environments to install GDAL and other libraries using the conda-forge channel: link

Getting started

🏃🏽‍♀️ You can find a small example to get started here

This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022