coldcuts is an R package to automatically generate and plot segmentation drawings in R

Overview

R-CMD-check

coldcuts

coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays.

The name is inspired by one of Italy's best products.

🎓 You can find the documentation and a tutorial to get started at the package's page: https://langleylab.github.io/coldcuts

🗂 You can find additional segmentation files, ontologies and other information at https://langleylab.github.io/coldcuts/articles/segmentations.html

📄 You can read the preprint on arXiv at https://arxiv.org/abs/2201.10116

Citation

If you use coldcuts in your research, cite the preprint:

Giuseppe D'Agostino and Sarah Langley, Automated brain parcellation rendering and visualization in R with coldcuts, arXiv 2022, arXiv:2201.10116

Motivation

When dealing with neuroimaging data, or any other type of numerical data derived from brain tissues, it is important to situate it in its anatomical and structural context. Various authors provide parcellations or segmentations of the brain, according to their best interpretation of which functional and anatomical boundaries make sense for our understanding of the brain. There are several stand-alone tools that allow to visualize and manipulate segmentations. However, neuroimaging data, together with other functional data such as transcriptomics, is often manipulated in a statistical programming language such as R which does not have trivial implementations for the visualization of segmentations.

To bridge this gap, some R packages have been recently published:

  • ggseg by Athanasia Mo Mowinckel and Didac Vidal-Piñeiro
  • cerebroViz by Ethan Bahl, Tanner Koomar, and Jacob J Michaelson
  • fsbrain by Tim Schäfer and Christine Ecker

ggseg and cerebroviz offer 2D (and 3D in the case of ggseg3d) visualizations of human brain segmentations, with the possibility of integration with external datasets. These segmentations are manually curated, which means that new datasets must be manually inserted, and they are limited to the human brain in scope. ggseg in particular has made available several segmentations of human cortical surface atlases. fsbrain focuses on 3D visualization of human MRI data with external data integration and visualization in both native space and transformed spaces. It does not depend on manually curated datastes (beyond segmentations).

While these tools provide a wealth of beautiful visualization interfaces, we felt the need to implement a tool to systematically create 2D (and potentially 3D) objects that are easily shared and manipulated in R, with the addition of labels, external datasets and simple operations such as subsetting and projecting, with minimal need for manual curation and without limiting ourselves to a particular species.

Thus, coldcuts is our attempt at bridging the gap between imaging/high throughput brain data and R through data visualization.

Installing the package

⬇️ You can install this package using devtools::install_github():

devtools::install_github("langleylab/coldcuts")

Nota bene: coldcuts uses smoothr to smooth 2D polygons. This package requires the installation of terra which has some system dependencies for spatial data, such as GDAL, GEOS and PROJ that can sometimes be difficult to install, especially in machines on which you do not have admin rights.

One possible workaround when you do not have admin rights is to use conda virtual environments to install GDAL and other libraries using the conda-forge channel: link

Getting started

🏃🏽‍♀️ You can find a small example to get started here

A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022