Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

Overview

Conditional DETR

This repository is an official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

Introduction

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

Our conditional DETR learns a conditional spatial query from the decoder embedding for decoder multi-head cross-attention. The benefit is that through the conditional spatial query, each cross-attention head is able to attend to a band containing a distinct region, e.g., one object extremity or a region inside the object box (Figure 1). This narrows down the spatial range for localizing the distinct regions for object classification and box regression, thus relaxing the dependence on the content embeddings and easing the training. Empirical results show that conditional DETR converges 6.7x faster for the backbones R50 and R101 and 10x faster for stronger backbones DC5-R50 and DC5-R101.

Model Zoo

We provide conditional DETR and conditional DETR-DC5 models. AP is computed on COCO 2017 val.

Method Epochs Params (M) FLOPs (G) AP APS APM APL URL
DETR-R50 500 41 86 42.0 20.5 45.8 61.1 model
log
DETR-R50 50 41 86 34.8 13.9 37.3 54.4 model
log
DETR-DC5-R50 500 41 187 43.3 22.5 47.3 61.1 model
log
DETR-R101 500 60 152 43.5 21.0 48.0 61.8 model
log
DETR-R101 50 60 152 36.9 15.5 40.6 55.6 model
log
DETR-DC5-R101 500 60 253 44.9 23.7 49.5 62.3 model
log
Conditional DETR-R50 50 44 90 41.0 20.6 44.3 59.3 model
log
Conditional DETR-DC5-R50 50 44 195 43.7 23.9 47.6 60.1 model
log
Conditional DETR-R101 50 63 156 42.8 21.7 46.6 60.9 model
log
Conditional DETR-DC5-R101 50 63 262 45.0 26.1 48.9 62.8 model
log

Note:

  1. The numbers in the table are slightly differently from the numbers in the paper. We re-ran some experiments when releasing the codes.
  2. "DC5" means removing the stride in C5 stage of ResNet and add a dilation of 2 instead.

Installation

Requirements

  • Python >= 3.7, CUDA >= 10.1
  • PyTorch >= 1.7.0, torchvision >= 0.6.1
  • Cython, COCOAPI, scipy, termcolor

The code is developed using Python 3.8 with PyTorch 1.7.0. First, clone the repository locally:

git clone https://github.com/Atten4Vis/ConditionalDETR.git

Then, install PyTorch and torchvision:

conda install pytorch=1.7.0 torchvision=0.6.1 cudatoolkit=10.1 -c pytorch

Install other requirements:

cd ConditionalDETR
pip install -r requirements.txt

Usage

Data preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
├── annotations/  # annotation json files
└── images/
    ├── train2017/    # train images
    ├── val2017/      # val images
    └── test2017/     # test images

Training

To train conditional DETR-R50 on a single node with 8 gpus for 50 epochs run:

bash scripts/conddetr_r50_epoch50.sh

or

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env \
    main.py \
    --resume auto \
    --coco_path /path/to/coco \
    --output_dir output/conddetr_r50_epoch50

The training process takes around 30 hours on a single machine with 8 V100 cards.

Same as DETR training setting, we train conditional DETR with AdamW setting learning rate in the transformer to 1e-4 and 1e-5 in the backbone. Horizontal flips, scales and crops are used for augmentation. Images are rescaled to have min size 800 and max size 1333. The transformer is trained with dropout of 0.1, and the whole model is trained with grad clip of 0.1.

Evaluation

To evaluate conditional DETR-R50 on COCO val with 8 GPUs run:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env \
    main.py \
    --batch_size 2 \
    --eval \
    --resume <checkpoint.pth> \
    --coco_path /path/to/coco \
    --output_dir output/<output_path>

Note that numbers vary depending on batch size (number of images) per GPU. Non-DC5 models were trained with batch size 2, and DC5 with 1, so DC5 models show a significant drop in AP if evaluated with more than 1 image per GPU.

License

Conditional DETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citation

@inproceedings{meng2021-CondDETR,
  title       = {Conditional DETR for Fast Training Convergence},
  author      = {Meng, Depu and Chen, Xiaokang and Fan, Zejia and Zeng, Gang and Li, Houqiang and Yuan, Yuhui and Sun, Lei and Wang, Jingdong},
  booktitle   = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year        = {2021}
}
Owner
Attention for Vision and Visualization
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022