A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Overview

Cover

Edits made to this repo by Katherine Crowson

I have added several features to this repository for use in creating higher quality generative art (feature visualization probably also benefits):

  • Deformable convolutions have been added.

  • Higher quality non-learnable upsampling filters (bicubic, Lanczos) have been added, with matching downsampling filters. A bilinear downsampling filter which low pass filters properly has also been added.

  • The nets can now optionally output to a fixed decorrelated color space which is then transformed to RGB and sigmoided. Deep Image Prior as originally written does not know anything about the correlations between RGB color channels in natural images, which can be disadvantageous when using it for feature visualization and generative art.

Example:

from models import get_hq_skip_net

net = get_hq_skip_net(input_depth).to(device)

get_hq_skip_net() provides higher quality defaults for the skip net, using the added features, than get_net(). Deformable convolutions can be slow and if this is a problem you can disable them with offset_groups=0 or offset_type='none'. The decorrelated color space can be turned off with decorr_rgb=False. The upsample_mode and downsample_mode defaults are now 'cubic' for visual quality, I would recommend not going below 'linear'. The default channel count and number of scales has been increased.

The default configuration is to use 1x1 convolution layers to create the offsets for the deformable convolutions, because training can become unstable with 3x3. However to make full use of deformable convolutions you may want to use 3x3 offset layers and set their learning rate to around 1/10 of the normal layers:

net = get_hq_skip_net(input_depth, offset_type='full')
params = [{'params': get_non_offset_params(net), 'lr': lr},
          {'params': get_offset_params(net), 'lr': lr / 10}]
opt = optim.Adam(params)

This is a merge of Daniel Russell's deep-image-prior notebook with Katherine Crowson's notebook

Some minor additions: P. Fishwick 01/28/2022

Merged Katherine Crowson's deep_image_prior into Daniel Russell's original notebook : https://github.com/crowsonkb/deep-image-prior
Mount Google Drive to save the directory deep_image_prior
Updated to CLIP model RN50x64 with size 448
Lowered cutn to 10 for a V100 (16GB memory) - update for an A100
Iterates over num_images to create an image batch
Saves the image at each display interval

Original README

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make sure you get similar results to the paper first. Easiest to check using text inpainting notebook. Try to set double precision mode or turn off cudnn.

Deep image prior

In this repository we provide Jupyter Notebooks to reproduce each figure from the paper:

Deep Image Prior

CVPR 2018

Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky

[paper] [supmat] [project page]

Here we provide hyperparameters and architectures, that were used to generate the figures. Most of them are far from optimal. Do not hesitate to change them and see the effect.

We will expand this README with a list of hyperparameters and options shortly.

Install

Here is the list of libraries you need to install to execute the code:

  • python = 3.6
  • pytorch = 0.4
  • numpy
  • scipy
  • matplotlib
  • scikit-image
  • jupyter

All of them can be installed via conda (anaconda), e.g.

conda install jupyter

or create an conda env with all dependencies via environment file

conda env create -f environment.yml

Docker image

Alternatively, you can use a Docker image that exposes a Jupyter Notebook with all required dependencies. To build this image ensure you have both docker and nvidia-docker installed, then run

nvidia-docker build -t deep-image-prior .

After the build you can start the container as

nvidia-docker run --rm -it --ipc=host -p 8888:8888 deep-image-prior

you will be provided an URL through which you can connect to the Jupyter notebook.

Google Colab

To run it using Google Colab, click here and select the notebook to run. Remember to uncomment the first cell to clone the repository into colab's environment.

Citation

@article{UlyanovVL17,
    author    = {Ulyanov, Dmitry and Vedaldi, Andrea and Lempitsky, Victor},
    title     = {Deep Image Prior},
    journal   = {arXiv:1711.10925},
    year      = {2017}
}
Owner
Paul Fishwick
Distinguished Univ. Chair of Arts, Technology, and Emerging Communication & Professor of Computer Science
Paul Fishwick
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022