"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

Overview

PhaseGuidedControl

The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be upgraded to the current version of RaiSim soon.

This repository contains the RL environment and serveral other necessary code for the paper:

"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller" (DOI: 10.1109/LRA.2021.3136645)

@ARTICLE{9656601,  
author={Shao, Yecheng and Jin, Yongbin and Liu, Xianwei and He, Weiyan and Wang, Hongtao and Yang, Wei},  
journal={IEEE Robotics and Automation Letters},   
title={Learning Free Gait Transition for Quadruped Robots via Phase-Guided Controller},   
year={2021},  
volume={},  
number={},  
pages={1-1},  
doi={10.1109/LRA.2021.3136645}
}

Dependencies

This environment uses RaiSim as the physics engine, which requires an activation key. Since the current version is developed based on the old version of raisim, raisimOgre is used for visualization and raisimGym is used for training.

For the algorithms, we use tensorflow and stable-baselines.

Compile

Please follow the guide of raisimGym:

# navigate to the raisimGym folder
cd /WHERE/YOUR/RAISIMGYM/REPO/IS
# first switch to the cpg branch
git checkout cpg
# compile the environment
python3 setup.py install --CMAKE_PREFIX_PATH $LOCAL_BUILD --env /WHERE/YOUR/CUSTOM/ENVIRONMENT/IS

Train

The configuration file cfg/default_cfg.yaml contains some parameters for the training envrionment. Here list some important parameters.

  • useManualPhase: (bool) determines whether to use manually-designed gaits during training

  • threeLegGait: (bool) determines whether to use three-legged gaits during training

  • specificGait: (int) an option to use only one kind of CPG gait during training, -1 for all four gaits

  • noiseFtr: (double) overall amplitude of all the noises, 0 to disable all the noises.

Run the following command to train the model.

python3 scripts/commanded_locomotion_lstm.py

Test

We use the Cheetah-Software for test and hardware depolyment. Copy the files in controller folder to the Cheetah-Software/user and modify the CMakeLists.txt to compile the controller. Our C++ implemented LSTM is also included in those files. Use scripts/params_to_csv.py to generate csv files for the parameters of the LSTM, and save the files to Cheetah-Software/config with proper names.

Owner
X-Mechanics
Center For X-Mechanics, Zhejiang University
X-Mechanics
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022