"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

Overview

PhaseGuidedControl

The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be upgraded to the current version of RaiSim soon.

This repository contains the RL environment and serveral other necessary code for the paper:

"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller" (DOI: 10.1109/LRA.2021.3136645)

@ARTICLE{9656601,  
author={Shao, Yecheng and Jin, Yongbin and Liu, Xianwei and He, Weiyan and Wang, Hongtao and Yang, Wei},  
journal={IEEE Robotics and Automation Letters},   
title={Learning Free Gait Transition for Quadruped Robots via Phase-Guided Controller},   
year={2021},  
volume={},  
number={},  
pages={1-1},  
doi={10.1109/LRA.2021.3136645}
}

Dependencies

This environment uses RaiSim as the physics engine, which requires an activation key. Since the current version is developed based on the old version of raisim, raisimOgre is used for visualization and raisimGym is used for training.

For the algorithms, we use tensorflow and stable-baselines.

Compile

Please follow the guide of raisimGym:

# navigate to the raisimGym folder
cd /WHERE/YOUR/RAISIMGYM/REPO/IS
# first switch to the cpg branch
git checkout cpg
# compile the environment
python3 setup.py install --CMAKE_PREFIX_PATH $LOCAL_BUILD --env /WHERE/YOUR/CUSTOM/ENVIRONMENT/IS

Train

The configuration file cfg/default_cfg.yaml contains some parameters for the training envrionment. Here list some important parameters.

  • useManualPhase: (bool) determines whether to use manually-designed gaits during training

  • threeLegGait: (bool) determines whether to use three-legged gaits during training

  • specificGait: (int) an option to use only one kind of CPG gait during training, -1 for all four gaits

  • noiseFtr: (double) overall amplitude of all the noises, 0 to disable all the noises.

Run the following command to train the model.

python3 scripts/commanded_locomotion_lstm.py

Test

We use the Cheetah-Software for test and hardware depolyment. Copy the files in controller folder to the Cheetah-Software/user and modify the CMakeLists.txt to compile the controller. Our C++ implemented LSTM is also included in those files. Use scripts/params_to_csv.py to generate csv files for the parameters of the LSTM, and save the files to Cheetah-Software/config with proper names.

Owner
X-Mechanics
Center For X-Mechanics, Zhejiang University
X-Mechanics
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022