Bayesian Image Reconstruction using Deep Generative Models

Related tags

Deep Learningbrgm
Overview

         

diagram

Bayesian Image Reconstruction using Deep Generative Models

R. Marinescu, D. Moyer, P. Golland

For technical inquiries, please create a Github issue. For other inquiries, please contact Razvan Marinescu: [email protected]

For a demo of our BRGM model, see the Colab Notebook.

News

  • Feb 2021: Updated methods section in arXiv paper. We now start from the full Bayesian formulation, and derive the loss function from the MAP estimate (in appendix), and show the graphical model. Code didn't change in this update.
  • Dec 2020: Pre-trained models now available on MIT Dropbox.
  • Nov 2020: Uploaded article pre-print to arXiv.

Requirements

Our method, BRGM, builds on the StyleGAN2 Tensorflow codebase, so our requirements are the same as for StyleGAN2:

  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • TensorFlow 1.14 (Windows and Linux) or 1.15 (Linux only). TensorFlow 2.x is not supported. On Windows you need to use TensorFlow 1.14, as the standard 1.15 installation does not include necessary C++ headers.
  • One or more high-end NVIDIA GPUs with at least 12GB DRAM, NVIDIA drivers, CUDA 10.0 toolkit and cuDNN 7.5.

Installation from StyleGAN2 Tensorflow environment

If you already have a StyleGAN2 Tensorflow environment in Anaconda, you can clone that environment and additionally install the missing packages:

# clone environment stylegan2 into brgm
conda create --name brgm --clone stylegan2
source activate brgm

# install missing packages
conda install -c menpo opencv
conda install scikit-image==0.17.2

Installation from scratch with Anaconda

Create conda environment and install packages:

conda create -n "brgm" python=3.6.8 tensorflow-gpu==1.15.0 requests==2.22.0 Pillow==6.2.1 numpy==1.17.4 scikit-image==0.17.2

source activate brgm

conda install -c menpo opencv
conda install -c anaconda scipy

Clone this github repository:

git clone https://github.com/razvanmarinescu/brgm.git 

Image reconstruction with pre-trained StyleGAN2 generators

Super-resolution with pre-trained FFHQ generator, on a set of unseen input images (datasets/ffhq), with super-resolution factor x32. The tag argument is optional, and appends that string to the results folder:

python recon.py recon-real-images --input=datasets/ffhq --tag=ffhq \
 --network=dropbox:ffhq.pkl --recontype=super-resolution --superres-factor 32

Inpainting with pre-trained Xray generator (MIMIC III), using mask files from masks/1024x1024/ that match the image names exactly:

python recon.py recon-real-images --input=datasets/xray --tag=xray \
 --network=dropbox:xray.pkl --recontype=inpaint --masks=masks/1024x1024

Super-resolution on brain dataset with factor x8:

python recon.py recon-real-images --input=datasets/brains --tag=brains \
 --network=dropbox:brains.pkl --recontype=super-resolution --superres-factor 8

Running on your images

For running on your images, pass a new folder with .png/.jpg images to --input. For inpainting, you need to pass an additional masks folder to --masks, which contains a mask file for each image in the --input folder.

Training new StyleGAN2 generators

Follow the StyleGAN2 instructions for how to train a new generator network. In short, given a folder of images , you need to first prepare a TFRecord dataset, and then run the training code:

python dataset_tool.py create_from_images ~/datasets/my-custom-dataset ~/my-custom-images

python run_training.py --num-gpus=8 --data-dir=datasets --config=config-e --dataset=my-custom-dataset --mirror-augment=true
Owner
Razvan Valentin Marinescu
Postdoc Researcher working on medical imaging, machine learning and bayesian statistics.
Razvan Valentin Marinescu
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022