From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Overview

From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang and Jiaying Liu

[Paper Link] [Project Page] [Slides](TBA)[Video](TBA) (CVPR'2020 Poster)

Abstract

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement. A deep recursive band network (DRBN) is proposed to recover a linear band representation of an enhanced normal-light image with paired low/normal-light images, and then obtain an improved one by recomposing the given bands via another learnable linear transformation based on a perceptual quality-driven adversarial learning with unpaired data. The architecture is powerful and flexible to have the merit of training with both paired and unpaired data. On one hand, the proposed network is well designed to extract a series of coarse-to-fine band representations, whose estimations are mutually beneficial in a recursive process. On the other hand, the extracted band representation of the enhanced image in the first stage of DRBN (recursive band learning) bridges the gap between the restoration knowledge of paired data and the perceptual quality preference to real high-quality images. Its second stage (band recomposition) learns to recompose the band representation towards fitting perceptual properties of highquality images via adversarial learning. With the help of this two-stage design, our approach generates the enhanced results with well reconstructed details and visually promising contrast and color distributions. Extensive evaluations demonstrate the superiority of our DRBN.

If you find the resource useful, please cite the following :- )

@InProceedings{Yang_2020_CVPR,
author = {Yang, Wenhan and Wang, Shiqi and Fang, Yuming and Wang, Yue and Liu, Jiaying},
title = {From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Installation:

  1. Clone this repo
  2. Install PyTorch and dependencies from http://pytorch.org
  3. For stage II training, you need to download [VGG16 Model] and put it in DRBL-stage2/src/.
  4. For testing, you can directly run test.sh in DRBL-stage1/src/ and DRBL-stage2/src/.
  5. For training, you can directly run train.sh in DRBL-stage1/src/ and DRBL-stage2/src/.
  6. You can download our dataset here: [Dataset Link] (extracted code: 22im) [Partly updated on 27 March]

Note: the code is suitable for PyTorch 0.4.1)

Detailed Guidance:

Thank you for your attention!

  1. How could I reproduce the objective evaluation results in Table I in the paper?
    You can run sh ./DRBL-stage1/src/test.sh
    The 1st stage offers better objective results while the other produces better overall subjective visual quality. In our paper, the methods involved in objective comparisons are not trained with adversarial/quality losses.

  2. Data structure You can see src\data\lowlight.py and src\data\lowlighttest.py for those details in the code of each stage.

    In the 1st stage:
    hr --> normal-light images, lr --> low-light images
    lr and hr are paired.

    In the 2nd stage:
    hr --> normal-light images, lr --> low-light images
    lr and hr are paired.
    lrr --> low-light images in the real applications, hq --> high quality dataset

  3. Dataset You can obtain the dataset via: [Dataset Link] (extracted code: 22im) [Partly updated on 27 March]
    We introduce these collections here:
    a) Our_low: real captured low-light images in LOL for training;
    b) Our_normal: real captured normal-light images in LOL for training;
    c) Our_low_test: real captured low-light images in LOL for testing;
    d) Our_normal_test: real captured normal-light images in LOL for testing;
    e) AVA_good_2: the high-quality images selected from the AVA dataset based on the MOS values;
    f) Low_real_test_2_rs: real low-light images selected from LIME, NPE, VV, DICM, the typical unpaired low-light testing datasets;
    g) Low_degraded: synthetic low-light images in LOL for training;
    h) Normal: synthetic normal-light images in LOL for training;

  4. Image number in LOL
    LOL: Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. "Deep Retinex Decomposition for Low-Light Enhancement", BMVC, 2018. [Baiduyun (extracted code: sdd0)] [Google Drive]
    LOL-v2 (the extension work): Wenhan Yang, Haofeng Huang, Wenjing Wang, Shiqi Wang, and Jiaying Liu. "Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement", TIP, 2021. [Baiduyun (extracted code: l9xm)] [Google Drive]

    We use LOL-v2 as it is larger and more diverse. In fact, it is quite unexpected that the work of LOL-v2 is published later than this, which might also bother followers.

    I think you can choose which one to follow freely.

  5. Pytorch version
    Only 0.4 and 0.41 currently.
    If you have to use more advanced versions, which might be constrained to the GPU device types, you might access Wang Hong's github for the idea to replace parts of the dataloader: [New Dataloader]

  6. Why does stage 2 have two branches?
    The distributions of LOL and LIME, NPE, VV, DICM are quite different.
    We empirically found that it will lead to better performance if two models and the corresponding training data are adopted.

Contact

If you have questions, you can contact [email protected]. A timely response is promised, if the email is sent by your affliaton email with your signed name.

Owner
Yang Wenhan
Yang Wenhan
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022