A collection of models for image<->text generation in ACM MM 2021.

Overview

Bi-directional Image and Text Generation

UMT-BITG (image & text generator)

Unifying Multimodal Transformer for Bi-directional Image and Text Generation,
Yupan Huang, Bei Liu, Yutong Lu, in ACM MM 2021 (Industrial Track).

UMT-DBITG (diverse image & text generator)

A Picture is Worth a Thousand Words: A Unified System for Diverse Captions and Rich Images Generation,
Yupan Huang, Bei Liu, Jianlong Fu, Yutong Lu, in ACM MM 2021 (Video and Demo Track).

Poster or slides are available in the assets folder by visiting OneDrive.

Data & Pre-trained Models

Download preprocessed data and our pre-trained models by visiting OneDrive. We suggest following our data structures, which is consistent with the paths in config.py. You may need to modify the root_path in config.py. In addition, please following the instructions to prepare some other data:

  • Download grid features in path data/grid_features provided by X-LXMERT or follow feature extraction to extract these features.
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_train_grid8.h5 -P data/grid_features
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_valid_grid8.h5 -P data/grid_features
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_test_grid8.h5 -P data/grid_features
    
  • For text-to-image evaluation on MSCOCO dataset, we need the real images to calculate the FID metric. For UMT-DBITG, we use MSCOCO karpathy split, which has been included in the OneDrive folder (images/imgs_karpathy). For UMT-BITG, please download MSCOCO validation set in path images/coco_val2014.

Citation

If you like our paper or code, please generously cite us:

@inproceedings{huang2021unifying,
  author    = {Yupan Huang and Bei Liu and Yutong Lu},
  title     = {Unifying Multimodal Transformer for Bi-directional Image and Text Generation},
  booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
  year      = {2021}
}

@inproceedings{huang2021diverse,
  author    = {Yupan Huang and Bei Liu and Jianlong Fu and Yutong Lu},
  title     = {A Picture is Worth a Thousand Words: A Unified System for Diverse Captions and Rich Images Generation},
  booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
  year      = {2021}
}

Acknowledgement

Our code is based on LaBERT and X-LXMERT. Our evaluation code is from pytorch-fid and inception_score. We sincerely thank them for their contributions!

Feel free to open issues or email to me for help to use this code. Any feedback is welcome!

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022