This is a file about Unet implemented in Pytorch

Related tags

Deep LearningUnet
Overview

Unet

this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet

architecture of Unet

component of Unet

Convolution and downsampling

two layers of convolution which consists of BatchNorm and Relu and then downsampling

class TwoConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(TwoConv, self).__init__()
        self.twoconv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        return self.twoconv(x)

class TwoConvDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(TwoConvDown, self).__init__()
        self.twoconvdown = nn.Sequential(
            nn.MaxPool2d(2),
            TwoConv(in_channels, out_channels),
        )

    def forward(self, x):
        return self.twoconvdown(x)

Upsampling and Concatation

there are two modes, "pad" and "crop" to deal with the different size of two parts in Unet. "crop" is the same operation with paper of Unet.

class UpCat(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UpCat, self).__init__()
        self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
        self.twoconv = TwoConv(in_channels=in_channels, out_channels=out_channels)

    def forward(self, x1, x2, mode="pad"):
        '''
        :param x1: Unet right part, size is samller
        :param x2: Unet left part,size is larger
        :return:
        '''
        x1 = self.up(x1)
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        if mode == "pad":
            x1 = nn.functional.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2))
        elif mode == "crop":
            left = diffX // 2
            right = diffX - left
            up = diffY // 2
            down = diffY - up

            x2 = x2[:, :, left:x2.size()[2]-right, up:x2.size()[3]-down]

        x = torch.cat([x2, x1], dim=1)
        x = self.twoconv(x)
        return x

main part of Unet

class Unet(nn.Module):
    def __init__(self, in_channels,
                 channel_list: list = [64, 128, 256, 512, 1024],
                 length = 5,
                 mode = "pad")
Owner
Dragon
Dragon
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
113 Nov 28, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022