Code for the Active Speakers in Context Paper (CVPR2020)

Overview

Active Speakers in Context

This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper.

Before Training

The code relies on multiple external libraries go to ./scripts/dev_env.sh.an recreate the suggested envirroment.

This code works over face crops and their corresponding audio track, before you start training you need to preprocess the videos in the AVA dataset. We have 3 utility files that contain the basic data to support this process, download them using ./scripts/dowloads.sh.

  1. Extract the audio tracks from every video in the dataset. Go to ./data/extract_audio_tracks.py in main adapt the ava_video_dir (directory with the original ava videos) and target_audios (empty directory where the audio tracks will be stored) to your local file system. The code relies on 16k .wav files and will fail with other formats and bit rates.
  2. Slice the audio tracks by timestamp. Go to ./data/slice_audio_tracks.py in main adapt the ava_audio_dir (the directory with the audio tracks you extracted on step 1), output_dir (empty directory where you will store the sliced audio files) and csv (the utility file you download previously, use the set accordingly) to your local file system.
  3. Extract the face crops by timestamp. Go to ./data/extract_face_crops_time.py in main adapt the ava_video_dir (directory with the original ava videos), csv_file (the utility file you download previously, use the train/val/test set accordingly) and output_dir (empty directory where you will store the face crops) to your local file system. This process will result in about 124GB extra data.

The full audio tracks obtained on step 1. will not be used anymore.

Training

Training the ASC is divided in two major stages: the optimization of the Short-Term Encoder (similar to google baseline) and the optimization of the Context Ensemble Network. The second step includes the pair-wise refinement and the temporal refinement, and relies on a full forward pass of the Short-Term Encoder on the training and validation sets.

Training the Short-Term Encoder

Got to ./core/config.py and modify the STE_inputs dictionary so that the keys audio_dir, video_dir and models_out point to the audio clips, face crops (those extracted on ‘Before Training’) and an empty directory where the STE models will be saved.

Execute the script STE_train.py clip_lenght cuda_device_number, we used clip_lenght=11 on the paper, but it can be set to any uneven value greater than 0 (performance will vary!).

Forward Short Term Encoder

The Active Speaker Context relies on the features extracted from the STE for its optimization, execute the script python STE_forward.py clip_lenght cuda_device_number, use the same clip_lenght as the training. Check lines 44 and 45 to switch between a list of training and val videos, you will need both subsets for the next step.

If you want to evaluate on the AVA Active Speaker Datasets, use ./STE_postprocessing.py, check lines 44 to 50 and adjust the files to your local file system.

Training the ASC Module

Once all the STE features have been calculated, go to ./core/config.py and change the dictionary ASC_inputs modify the value of keys, features_train_full, features_val_full, and models_out so that they point to the local directories where the features extracted with the STE in the train and val set have been stored, and an empty directory where the ASC models will 'be stored. Execute ./ASC_train.py clip_lenght skip_frames speakers cuda_device_number clip_lenght must be the same clip size used to train the STE, skip_frames determines the amount of frames in between sampled clips, we used 4 for the results presented in the paper, speakers is the number of candidates speakers in the contex.

Forward ASC

use ./ASC_forward.py clips time_stride speakers cuda_device_number to forward the models produced by the last step. Use the same clip and stride configurations. You will get one csv file for every video, for evaluation purposes use the script ASC_predcition_postprocessing.py to generate a single CSV file which is compatible with the evaluation tool, check lines 54 to 59 and adapt the paths to your local configuration.

If you want to evaluate on the AVA Active Speaker Datasets, use ./ASC_predcition_postprocessing.py, check lines 54 to 59 and adjust the files to your local file system.

Pre-Trained Models

Short Term Encoder

Active Speaker Context

Prediction Postprocessing and Evaluation

The prediction format follows the very same format of the AVA-Active speaker dataset, but contains an extra value for the active speaker class in the final column. The script ./STE_postprocessing.py handles this step. Check lines 44, 45 and 46 and set the directory where you saved the output of the forward pass (44), the directory with the original ava csv (45) and and empty temporary directory (46). Additionally set on lines 48 and 49 the outputs of the script, one of them is the final prediction formated to use the official evaluation tool and the other one is a utility file to use along the same tool. Notice you can do some temporal smoothing on the function 'softmax_feats', is a simple median filter and you can choose the window size on lines 35 and 36.

PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023