Code for the Active Speakers in Context Paper (CVPR2020)

Overview

Active Speakers in Context

This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper.

Before Training

The code relies on multiple external libraries go to ./scripts/dev_env.sh.an recreate the suggested envirroment.

This code works over face crops and their corresponding audio track, before you start training you need to preprocess the videos in the AVA dataset. We have 3 utility files that contain the basic data to support this process, download them using ./scripts/dowloads.sh.

  1. Extract the audio tracks from every video in the dataset. Go to ./data/extract_audio_tracks.py in main adapt the ava_video_dir (directory with the original ava videos) and target_audios (empty directory where the audio tracks will be stored) to your local file system. The code relies on 16k .wav files and will fail with other formats and bit rates.
  2. Slice the audio tracks by timestamp. Go to ./data/slice_audio_tracks.py in main adapt the ava_audio_dir (the directory with the audio tracks you extracted on step 1), output_dir (empty directory where you will store the sliced audio files) and csv (the utility file you download previously, use the set accordingly) to your local file system.
  3. Extract the face crops by timestamp. Go to ./data/extract_face_crops_time.py in main adapt the ava_video_dir (directory with the original ava videos), csv_file (the utility file you download previously, use the train/val/test set accordingly) and output_dir (empty directory where you will store the face crops) to your local file system. This process will result in about 124GB extra data.

The full audio tracks obtained on step 1. will not be used anymore.

Training

Training the ASC is divided in two major stages: the optimization of the Short-Term Encoder (similar to google baseline) and the optimization of the Context Ensemble Network. The second step includes the pair-wise refinement and the temporal refinement, and relies on a full forward pass of the Short-Term Encoder on the training and validation sets.

Training the Short-Term Encoder

Got to ./core/config.py and modify the STE_inputs dictionary so that the keys audio_dir, video_dir and models_out point to the audio clips, face crops (those extracted on ‘Before Training’) and an empty directory where the STE models will be saved.

Execute the script STE_train.py clip_lenght cuda_device_number, we used clip_lenght=11 on the paper, but it can be set to any uneven value greater than 0 (performance will vary!).

Forward Short Term Encoder

The Active Speaker Context relies on the features extracted from the STE for its optimization, execute the script python STE_forward.py clip_lenght cuda_device_number, use the same clip_lenght as the training. Check lines 44 and 45 to switch between a list of training and val videos, you will need both subsets for the next step.

If you want to evaluate on the AVA Active Speaker Datasets, use ./STE_postprocessing.py, check lines 44 to 50 and adjust the files to your local file system.

Training the ASC Module

Once all the STE features have been calculated, go to ./core/config.py and change the dictionary ASC_inputs modify the value of keys, features_train_full, features_val_full, and models_out so that they point to the local directories where the features extracted with the STE in the train and val set have been stored, and an empty directory where the ASC models will 'be stored. Execute ./ASC_train.py clip_lenght skip_frames speakers cuda_device_number clip_lenght must be the same clip size used to train the STE, skip_frames determines the amount of frames in between sampled clips, we used 4 for the results presented in the paper, speakers is the number of candidates speakers in the contex.

Forward ASC

use ./ASC_forward.py clips time_stride speakers cuda_device_number to forward the models produced by the last step. Use the same clip and stride configurations. You will get one csv file for every video, for evaluation purposes use the script ASC_predcition_postprocessing.py to generate a single CSV file which is compatible with the evaluation tool, check lines 54 to 59 and adapt the paths to your local configuration.

If you want to evaluate on the AVA Active Speaker Datasets, use ./ASC_predcition_postprocessing.py, check lines 54 to 59 and adjust the files to your local file system.

Pre-Trained Models

Short Term Encoder

Active Speaker Context

Prediction Postprocessing and Evaluation

The prediction format follows the very same format of the AVA-Active speaker dataset, but contains an extra value for the active speaker class in the final column. The script ./STE_postprocessing.py handles this step. Check lines 44, 45 and 46 and set the directory where you saved the output of the forward pass (44), the directory with the original ava csv (45) and and empty temporary directory (46). Additionally set on lines 48 and 49 the outputs of the script, one of them is the final prediction formated to use the official evaluation tool and the other one is a utility file to use along the same tool. Notice you can do some temporal smoothing on the function 'softmax_feats', is a simple median filter and you can choose the window size on lines 35 and 36.

Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022