Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)

Overview

NeurIPS 2021

License: MIT

Title: Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (paper)

Authors: Junho Kim*, Byung-Kwan Lee*, and Yong Man Ro (*: equally contributed)

Affiliation: School of Electric Engineering, Korea Advanced Institute of Science and Technology (KAIST)

Email: [email protected], [email protected], [email protected]


This is official PyTorch Implementation code for the paper of "Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck" published in NeurIPS 21. It provides novel method of decomposing robust and non-robust features in intermediate layer. Further, we understand the semantic information of distilled features, by directly visualizing robust and non-robust features in the feature representation space. Consequently, we reveal that both of the robust and non-robust features indeed have semantic information in terms of human-perception by themselves. For more detail, you can refer to our paper!

Alt text

Citation

If you find this work helpful, please cite it as:

@inproceedings{
kim2021distilling,
title={Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck},
author={Junho Kim and Byung-Kwan Lee and Yong Man Ro},
booktitle={Advances in Neural Information Processing Systems},
editor={A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
year={2021},
url={https://openreview.net/forum?id=90M-91IZ0JC}
}

Datasets


Baseline Models


Adversarial Attacks (by torchattacks)

  • Fast Gradient Sign Method (FGSM)
  • Basic Iterative Method (BIM)
  • Projected Gradient Descent (PGD)
  • Carlini & Wagner (CW)
  • AutoAttack (AA)
  • Fast Adaptive Boundary (FAB)

This implementation details are described in loader/loader.py.

    # Gradient Clamping based Attack
    if args.attack == "fgsm":
        return torchattacks.FGSM(model=net, eps=args.eps)

    elif args.attack == "bim":
        return torchattacks.BIM(model=net, eps=args.eps, alpha=1/255)

    elif args.attack == "pgd":
        return torchattacks.PGD(model=net, eps=args.eps,
                                alpha=args.eps/args.steps*2.3, steps=args.steps, random_start=True)

    elif args.attack == "cw":
        return torchattacks.CW(model=net, c=0.1, lr=0.1, steps=200)

    elif args.attack == "auto":
        return torchattacks.APGD(model=net, eps=args.eps)

    elif args.attack == "fab":
        return torchattacks.FAB(model=net, eps=args.eps, n_classes=args.n_classes)

Included Packages (for Ours)

  • Informative Feature Package (model/IFP.py)
    • Distilling robust and non-robust features in intermediate layer by Information Bottleneck
  • Visualization of robust and non-robust features (visualization/inversion.py)
  • Non-Robust Feature (NRF) and Robust Feature (RF) Attack (model/IFP.py)
    • NRF : maximizing the magnitude of non-robust feature gradients
    • NRF2 : minimizing the magnitude of non-robust feature gradients
    • RF : maximizing the magnitude of robust feature gradients
    • RF2 : minimizing the magnitude of robust feature gradients

Baseline Methods

  • Plain (Plain Training)

    • Run train_plain.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • AT (PGD Adversarial Training)

    • Run train_AT.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • TRADES (Recent defense method)

    • Run train_TRADES.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='wide', type=str, help='network name: vgg or wide')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • MART (Recent defense method)

    • Run train_MART.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='wide', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')

Testing Model Robustness

  • Mearsuring the robustness in baseline models trained with baseline methods
    • Run test.py

      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--pop_number', default=3, type=int, help='Batch size')
      parser.add_argument('--datetime', default='00000000', type=str, help='checkpoint datetime')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--baseline', default='AT', type=str, help='baseline')

Visualizing Robust and Non-Robust Features

  • Feature Interpreation

    • Run visualize.py
    parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
    parser.add_argument('--steps', default=10, type=int, help='adv. steps')
    parser.add_argument('--eps', default=0.03, type=float, help='max norm')
    parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
    parser.add_argument('--network', default='vgg', type=str, help='network name')
    parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
    parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
    parser.add_argument('--epoch', default=0, type=int, help='epoch number')
    parser.add_argument('--attack', default='pgd', type=str, help='attack type')
    parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
    parser.add_argument('--batch_size', default=1, type=int, help='Batch size')
    parser.add_argument('--pop_number', default=3, type=int, help='Batch size')
    parser.add_argument('--prior', default='AT', type=str, help='Plain or AT')
    parser.add_argument('--prior_datetime', default='00000000', type=str, help='checkpoint datetime')
    parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
    parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
    parser.add_argument('--vis_atk', default='True', type=str2bool, help='is attacked image?')

Owner
LBK
Ph.D Candidate, KAIST EE
LBK
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022