Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)

Overview

NeurIPS 2021

License: MIT

Title: Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (paper)

Authors: Junho Kim*, Byung-Kwan Lee*, and Yong Man Ro (*: equally contributed)

Affiliation: School of Electric Engineering, Korea Advanced Institute of Science and Technology (KAIST)

Email: [email protected], [email protected], [email protected]


This is official PyTorch Implementation code for the paper of "Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck" published in NeurIPS 21. It provides novel method of decomposing robust and non-robust features in intermediate layer. Further, we understand the semantic information of distilled features, by directly visualizing robust and non-robust features in the feature representation space. Consequently, we reveal that both of the robust and non-robust features indeed have semantic information in terms of human-perception by themselves. For more detail, you can refer to our paper!

Alt text

Citation

If you find this work helpful, please cite it as:

@inproceedings{
kim2021distilling,
title={Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck},
author={Junho Kim and Byung-Kwan Lee and Yong Man Ro},
booktitle={Advances in Neural Information Processing Systems},
editor={A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
year={2021},
url={https://openreview.net/forum?id=90M-91IZ0JC}
}

Datasets


Baseline Models


Adversarial Attacks (by torchattacks)

  • Fast Gradient Sign Method (FGSM)
  • Basic Iterative Method (BIM)
  • Projected Gradient Descent (PGD)
  • Carlini & Wagner (CW)
  • AutoAttack (AA)
  • Fast Adaptive Boundary (FAB)

This implementation details are described in loader/loader.py.

    # Gradient Clamping based Attack
    if args.attack == "fgsm":
        return torchattacks.FGSM(model=net, eps=args.eps)

    elif args.attack == "bim":
        return torchattacks.BIM(model=net, eps=args.eps, alpha=1/255)

    elif args.attack == "pgd":
        return torchattacks.PGD(model=net, eps=args.eps,
                                alpha=args.eps/args.steps*2.3, steps=args.steps, random_start=True)

    elif args.attack == "cw":
        return torchattacks.CW(model=net, c=0.1, lr=0.1, steps=200)

    elif args.attack == "auto":
        return torchattacks.APGD(model=net, eps=args.eps)

    elif args.attack == "fab":
        return torchattacks.FAB(model=net, eps=args.eps, n_classes=args.n_classes)

Included Packages (for Ours)

  • Informative Feature Package (model/IFP.py)
    • Distilling robust and non-robust features in intermediate layer by Information Bottleneck
  • Visualization of robust and non-robust features (visualization/inversion.py)
  • Non-Robust Feature (NRF) and Robust Feature (RF) Attack (model/IFP.py)
    • NRF : maximizing the magnitude of non-robust feature gradients
    • NRF2 : minimizing the magnitude of non-robust feature gradients
    • RF : maximizing the magnitude of robust feature gradients
    • RF2 : minimizing the magnitude of robust feature gradients

Baseline Methods

  • Plain (Plain Training)

    • Run train_plain.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • AT (PGD Adversarial Training)

    • Run train_AT.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • TRADES (Recent defense method)

    • Run train_TRADES.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='wide', type=str, help='network name: vgg or wide')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • MART (Recent defense method)

    • Run train_MART.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='wide', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')

Testing Model Robustness

  • Mearsuring the robustness in baseline models trained with baseline methods
    • Run test.py

      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--pop_number', default=3, type=int, help='Batch size')
      parser.add_argument('--datetime', default='00000000', type=str, help='checkpoint datetime')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--baseline', default='AT', type=str, help='baseline')

Visualizing Robust and Non-Robust Features

  • Feature Interpreation

    • Run visualize.py
    parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
    parser.add_argument('--steps', default=10, type=int, help='adv. steps')
    parser.add_argument('--eps', default=0.03, type=float, help='max norm')
    parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
    parser.add_argument('--network', default='vgg', type=str, help='network name')
    parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
    parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
    parser.add_argument('--epoch', default=0, type=int, help='epoch number')
    parser.add_argument('--attack', default='pgd', type=str, help='attack type')
    parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
    parser.add_argument('--batch_size', default=1, type=int, help='Batch size')
    parser.add_argument('--pop_number', default=3, type=int, help='Batch size')
    parser.add_argument('--prior', default='AT', type=str, help='Plain or AT')
    parser.add_argument('--prior_datetime', default='00000000', type=str, help='checkpoint datetime')
    parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
    parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
    parser.add_argument('--vis_atk', default='True', type=str2bool, help='is attacked image?')

Owner
LBK
Ph.D Candidate, KAIST EE
LBK
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023