TF Image Segmentation: Image Segmentation framework

Overview

TF Image Segmentation: Image Segmentation framework

The aim of the TF Image Segmentation framework is to provide/provide a simplified way for:

  • Converting some popular general/medical/other Image Segmentation Datasets into easy-to-use for training .tfrecords format with unified interface: different datasets but same way to store images and annotations.
  • Training routine with on-the-fly data augmentation (scaling, color distortion).
  • Training routine that is proved to work for particular model/dataset pair.
  • Evaluating Accuracy of trained models with common accuracy measures: Mean IOU, Mean pix. accuracy, Pixel accuracy.
  • Model files that were trained on a particular dataset with reported accuracy (models that were trained using TF with reported training routine and not models that were converted from Caffe or other framework)
  • Model definitions (like FCN-32s and others) that use weights initializations from Image Classification models like VGG that are officially provided by TF-Slim library.

So far, the framework contains an implementation of the FCN models (training and evaluation) in Tensorflow and TF-Slim library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, convert your dataset to tfrecords and follow the instructions below.

The end goal is to provide utilities to convert other datasets, report accuracies on them and provide models.

Installation

This code requires:

  1. Tensorflow r0.12 or later version.

  2. Custom tensorflow/models repository, which might be merged in a future.

Simply run:

git clone -b fully_conv_vgg https://github.com/warmspringwinds/models

And add models/slim subdirectory to your path:

import sys
# update with your path
sys.path.append('/home/dpakhom1/workspace/models/slim/')
  1. Some libraries which can be acquired by installing Anaconda package.

Or you can install scikit-image, matplotlib, numpy using pip.

  1. VGG 16 checkpoint file, which you can get from here.

  2. Clone this library:

git clone https://github.com/warmspringwinds/tf-image-segmentation

And add it to the path:

import sys
# update with your path
sys.path.append("/home/dpakhom1/tf_projects/segmentation/tf-image-segmentation/")

PASCAL VOC 2012

Implemented models were tested on Restricted PASCAL VOC 2012 Validation dataset (RV-VOC12) and trained on the PASCAL VOC 2012 Training data and additional Berkeley segmentation data for PASCAL VOC 12. It was important to test models on restricted Validation dataset to make sure no images in the validation dataset were seen by model during training.

The code to acquire the training and validating the model is also provided in the framework.

Fully Convolutional Networks for Semantic Segmentation (FCNs)

Here you can find models that were described in the paper "Fully Convolutional Networks for Semantic Segmentation" by Long et al. We trained and tested FCN-32s, FCN-16s and FCN-8s against PASCAL VOC 2012 dataset.

You can find all the scripts that were used for training and evaluation here.

This code has been used to train networks with this performance:

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Model Download Link
FCN-32s (ours) RV-VOC12 62.70 in prog. in prog. Dropbox
FCN-16s (ours) RV-VOC12 63.52 in prog. in prog. Dropbox
FCN-8s (ours) RV-VOC12 63.65 in prog. in prog. Dropbox
FCN-32s (orig.) RV-VOC11 59.40 73.30 89.10
FCN-16s (orig.) RV-VOC11 62.40 75.70 90.00
FCN-8s (orig.) RV-VOC11 62.70 75.90 90.30

About

If you used the code for your research, please, cite the paper:

@article{pakhomov2017deep,
  title={Deep Residual Learning for Instrument Segmentation in Robotic Surgery},
  author={Pakhomov, Daniil and Premachandran, Vittal and Allan, Max and Azizian, Mahdi and Navab, Nassir},
  journal={arXiv preprint arXiv:1703.08580},
  year={2017}
}

During implementation, some preliminary experiments and notes were reported:

Owner
Daniil Pakhomov
Phd student at JHU. Research interests: Image Classification, Image Segmentation, Face Detection and Face Recognition mostly based on Deep Learning.
Daniil Pakhomov
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022