SwinTrack: A Simple and Strong Baseline for Transformer Tracking

Overview

SwinTrack

This is the official repo for SwinTrack.

banner

A Simple and Strong Baseline

performance

Prerequisites

Environment

conda (recommended)

conda create -y -n SwinTrack
conda activate SwinTrack
conda install -y anaconda
conda install -y pytorch torchvision cudatoolkit -c pytorch
conda install -y -c fvcore -c iopath -c conda-forge fvcore
pip install wandb
pip install timm

pip

pip install -r requirements.txt

Dataset

Download

Unzip

The paths should be organized as following:

lasot
├── airplane
├── basketball
...
├── training_set.txt
└── testing_set.txt

lasot_extension
├── atv
├── badminton
...
└── wingsuit

got-10k
├── train
│   ├── GOT-10k_Train_000001
│   ...
├── val
│   ├── GOT-10k_Val_000001
│   ...
└── test
    ├── GOT-10k_Test_000001
    ...
    
trackingnet
├── TEST
├── TRAIN_0
...
└── TRAIN_11

coco2017
├── annotations
│   ├── instances_train2017.json
│   └── instances_val2017.json
└── images
    ├── train2017
    │   ├── 000000000009.jpg
    │   ├── 000000000025.jpg
    │   ...
    └── val2017
        ├── 000000000139.jpg
        ├── 000000000285.jpg
        ...

Prepare path.yaml

Copy path.template.yaml as path.yaml and fill in the paths.

LaSOT_PATH: '/path/to/lasot'
LaSOT_Extension_PATH: '/path/to/lasot_ext'
GOT10k_PATH: '/path/to/got10k'
TrackingNet_PATH: '/path/to/trackingnet'
COCO_2017_PATH: '/path/to/coco2017'

Prepare dataset metadata cache (optional)

Download the metadata cache from google drive, and unzip it in datasets/cache/

datasets
└── cache
    ├── SingleObjectTrackingDataset_MemoryMapped
    │   └── filtered
    │       ├── got-10k-got10k_vot_train_split-train-3c1ffeb0c530522f0345d088b2f72168.np
    │       ...
    └── DetectionDataset_MemoryMapped
        └── filtered
            └── coco2017-nocrowd-train-bcd5bf68d4b87619ab451fe293098401.np

Login to wandb

Register an account at wandb, then login with command:

wandb login

Training & Evaluation

Train and evaluate on a single GPU

# Tiny
python main.py SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers

# Base
python main.py SwinTrack Base --output_dir /path/to/output -W $num_dataloader_workers

# Base-384
python main.py SwinTrack Base-384 --output_dir /path/to/output -W $num_dataloader_workers

--output_dir is optional, -W defaults to 4.

note: our code performs evaluation automatically when training is done, output is saved in /path/to/output/test_metrics.

Train and evaluate on multiple GPUs using DDP

# Tiny
python main.py SwinTrack Tiny --distributed_nproc_per_node $num_gpus --distributed_do_spawn_workers --output_dir /path/to/output -W $num_dataloader_workers

Train and evaluate on multiple nodes with multiple GPUs using DDP

# Tiny
python main.py SwinTrack Tiny --master_address $master_address --distributed_node_rank $node_rank distributed_nnodes $num_nodes --distributed_nproc_per_node $num_gpus --distributed_do_spawn_workers --output_dir /path/to/output -W $num_dataloader_workers 

Train and evaluate with run.sh helper script

# Train and evaluate on all GPUs
./run.sh SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers
# Train and evaluate on multiple nodes
NODE_RANK=$NODE_INDEX NUM_NODES=$NUM_NODES MASTER_ADDRESS=$MASTER_ADDRESS DATE_WITH_TIME=$DATE_WITH_TIME ./run.sh SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers 

Ablation study

The ablation study can be done by applying a small patch to the main config file.

Take the ResNet 50 backbone as the example, the rest parameters are the same as the above.

# Train and evaluate with resnet50 backbone
python main.py SwinTrack Tiny --mixin_config resnet.yaml
# or with run.sh
./run.sh SwinTrack Tiny --mixin resnet.yaml

All available config patches are listed in config/SwinTrack/Tiny/mixin.

Train and evaluate with GOT-10k dataset

python main.py SwinTrack Tiny --mixin_config got10k.yaml

Submit $output_dir/test_metrics/got10k/submit/*.zip to the GOT-10k evaluation server to get the result of GOT-10k test split.

Evaluate Existing Model

Download the pretrained model from google drive, then type:

python main.py SwinTrack Tiny --weight_path /path/to/weigth_file.pth --mixin_config evaluation.yaml --output_dir /path/to/output

Our code can evaluate the model on multiple GPUs in parallel, so all parameters above are also available.

Tracking results

Touch here google drive

Citation

@misc{lin2021swintrack,
      title={SwinTrack: A Simple and Strong Baseline for Transformer Tracking}, 
      author={Liting Lin and Heng Fan and Yong Xu and Haibin Ling},
      year={2021},
      eprint={2112.00995},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
LitingLin
LitingLin
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022