MoCap-Solver: A Neural Solver for Optical Motion Capture Data

Overview

1. Description

This depository contains the sourcecode of MoCap-Solver and the baseline method [Holden 2018].

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions. It is based on our work published in SIGGRAPH 2021:

MoCap-Solver: A Neural Solver for Optical Motion Capture Data.

To configurate this project, run the following commands in Anaconda:

conda create -n MoCapSolver pip python=3.6
conda activate MoCapSolver
conda install cudatoolkit=10.1.243
conda install cudnn=7.6.5
conda install numpy=1.17.0
conda install matplotlib=3.1.3
conda install json5=0.9.1
conda install pyquaternion=0.9.9
conda install h5py=2.10.0
conda install tqdm=4.56.0
conda install tensorflow-gpu==1.13.1
conda install keras==2.2.5
conda install chumpy==0.70
conda install opencv-python==4.5.3.56
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
conda install tensorboard==1.15.1

2. Generate synthetic dataset

Download the project SMPLPYTORCH with SMPL models downloaded and configurated and put the subfolder "smplpytorch" into the folder "external".

Put the CMU mocap dataset from AMASS dataset into the folder

external/CMU

and download the 'smpl_data.npz' from the project SURREAL and put it into "external".

Finally, run the following scripts to generate training dataset and testing dataset.

python generate_dataset.py

We use a SEED to randomly select train dataset and test dataset and randomly generate noises. You can set the number of SEED to generate different datasets.

If you need to generate the training data of your own mocap data sequence, we need three kinds of data for each mocap data sequence: raw data, clean data and the bind pose. For each sequence, we should prepare these three kinds of data.

  • The raw data: the animations of raw markers that are captured by the optical mocap devices.
  • The clean data: The corresponding ground-truth skinned mesh animations containing clean markers and skeleton animation. The skeletons of each mocap sequences must be homogenious, that is to say, the numbers of skeletons and the hierarchy must be consistent. The clean markers is skinned on the skeletons. The skinning weights of each mocap sequence must be consistent.
  • The bind pose: The bind pose contains the positions of skeletons and the corresponding clean markers, as the Section 3 illustrated.
M: the marker global positions of cleaned mocap sequence. N * 56 * 3
M1: the marker global positions of raw mocap sequence. N * 56 * 3
J_R: The global rotation matrix of each joints of mocap sequence. N *  24 * 3 * 3
J_t: The joint global positions of mocap sequence. N * 24 * 3
J: The joint positions of T-pose. 24 * 3
Marker_config: The marker configuration of the bind-pose, meaning the local position of each marker with respect to the local frame of each joints. 56 * 24 * 3

The order of the markers and skeletons we process in our algorithm is as follows:

Marker_order = {
            "ARIEL": 0, "C7": 1, "CLAV": 2, "L4": 3, "LANK": 4, "LBHD": 5, "LBSH": 6, "LBWT": 7, "LELB": 8, "LFHD": 9,
            "LFSH": 10, "LFWT": 11, "LHEL": 12, "LHIP": 13,
            "LIEL": 14, "LIHAND": 15, "LIWR": 16, "LKNE": 17, "LKNI": 18, "LMT1": 19, "LMT5": 20, "LMWT": 21,
            "LOHAND": 22, "LOWR": 23, "LSHN": 24, "LTOE": 25, "LTSH": 26,
            "LUPA": 27, "LWRE": 28, "RANK": 29, "RBHD": 30, "RBSH": 31, "RBWT": 32, "RELB": 33, "RFHD": 34, "RFSH": 35,
            "RFWT": 36, "RHEL": 37, "RHIP": 38, "RIEL": 39, "RIHAND": 40,
            "RIWR": 41, "RKNE": 42, "RKNI": 43, "RMT1": 44, "RMT5": 45, "RMWT": 46, "ROHAND": 47, "ROWR": 48,
            "RSHN": 49, "RTOE": 50, "RTSH": 51, "RUPA": 52, "RWRE": 53, "STRN": 54, "T10": 55} // The order of markers

Skeleton_order = {"Pelvis": 0, "L_Hip": 1, "L_Knee": 2, "L_Ankle": 3, "L_Foot": 4, "R_Hip": 5, "R_Knee": 6, "R_Ankle": 7,
            "R_Foot": 8, "Spine1": 9, "Spine2": 10, "Spine3": 11, "L_Collar": 12, "L_Shoulder": 13, "L_Elbow": 14,
            "L_Wrist": 15, "L_Hand": 16, "Neck": 17, "Head": 18, "R_Collar": 19, "R_Shoulder": 20, "R_Elbow": 21,
            "R_Wrist": 22, "R_Hand": 23}// The order of skeletons.

3. Train and evaluate

3.1 MoCap-Solver

We can train and evaluate MoCap-Solver by running this script.

python train_and_evaluate_MoCap_Solver.py

3.2 Train and evaluate [Holden 2018]

We also provide our implement version of [Holden 2018], which is the baseline of mocap data solving.

Once prepared mocap dataset, we can train and evaluate the model [Holden 2018] by running the following script:

python train_and_evaluate_Holden2018.py

3.3 Pre-trained models

We set the SEED number to 100, 200, 300, 400 respectively, and generated four different datasets. We trained MoCap-Solver and [Holden 2018] on these four datasets and evaluated the errors on the test dataset, the evaluation result is showed on the table.

The pretrained models can be downloaded from Google Drive. To evaluate the pretrained models, you need to copy all the files in one of the seed folder (need to be consistent with the SEED parameter) into models/, and run the evaluation script:

python evaluate_MoCap_Solver.py

In our original implementation of MoCap-Solver and [Holden 2018] in our paper, markers and skeletons were normalized using the average bone length of the dataset. However, it is problematic when deploying this algorithm to the production environment, since the groundtruth skeletons of test data were actually unknown information. So in our released version, such normalization is removed and the evaluation error is slightly higher than our original implementation since the task has become more complex.

4. Typos

The loss function (3-4) of our paper: The first term of this function (i.e. alpha_1*D(Y, X)), X denotes the groundtruth clean markers and Y the predicted clean markers.

5. Citation

If you use this code for your research, please cite our paper:

@article{kang2021mocapsolver,
  author = {Chen, Kang and Wang, Yupan and Zhang, Song-Hai and Xu, Sen-Zhe and Zhang, Weidong and Hu, Shi-Min},
  title = {MoCap-Solver: A Neural Solver for Optical Motion Capture Data},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {40},
  number = {4},
  pages = {84},
  year = {2021},
  publisher = {ACM}
}
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022