Tf alloc - Simplication of GPU allocation for Tensorflow2

Related tags

Deep Learningtf_alloc
Overview

tf_alloc

Simpliying GPU allocation for Tensorflow

  • Developer: korkite (Junseo Ko)

Installation

pip install tf-alloc

⭐️ Why tf_alloc? Problems?

  • Compare to pytorch, tensorflow allocate all GPU memory to single training.
  • However, it is too much waste because, some training does not use whole GPU memory.
  • To solve this problem, TF engineers use two methods.
  1. Limit to use only single GPU
  2. Limit the use of only a certain percentage of GPUs.
  • However, these methods require complex code and memory management.

⭐️ Why tf_alloc? How to solve?

tf_alloc simplfy and automate GPU allocation using two methods.

⭐️ How to allocate?

  • Before using tf_alloc, you have to install tensorflow fits for your environment.
  • This library does not install specific tensorflow version.
# On the top of the code
from tf_alloc import allocate as talloc
talloc(gpu=1, percentage=0.5)

import tensorflow as tf
""" your code"""

It is only code for allocating GPU in certain percentage.

Parameters:

  • gpu = which gpu you want to use (if you have two gpu than [0, 1] is possible)
  • percentage = the percentage of memory usage on single gpu. 1.0 for maximum use.

⭐️ Additional Function.

GET GPU Objects

gpu_objs = get_gpu_objects()
  • To use this code, you can get gpu objects that contains gpu information.
  • You can set GPU backend by using this function.

GET CURRENT STATE

Defualt
current(
    gpu_id = False, 
    total_memory=False, 
    used = False, 
    free = False, 
    percentage_of_use = False,
    percentage_of_free = False,
)
  • You can use this functions to see current GPU state and possible maximum allocation percentage.
  • Without any parameters, than it only visualize possible maximum allocation percentage.
  • It is cmd line visualizer. It doesn't return values.

Parameters

  • gpu_id = visualize the gpu id number
  • total_memory = visualize the total memory of GPU
  • used = visualize the used memory of GPU
  • free = visualize the free memory of GPU
  • percentage_of_used = visualize the percentage of used memory of GPU
  • percentage_of_free = visualize the percentage of free memory of GPU

한국어는 간단하게!

설치

pip install tf-alloc

문제정의:

  • 텐서플로우는 파이토치와 다르게 훈련시 GPU를 전부 할당해버립니다.
  • 그러나 실제로 GPU를 모두 사용하지 않기 때문에 큰 낭비가 발생합니다.
  • 이를 막기 위해 두가지 방법이 사용되는데
  1. GPU를 1개만 쓰도록 제한하기
  2. GPU에서 특정 메모리만큼만 사용하도록 제한하기
  • 이 두가지 입니다. 그러나 이 방법을 위해선 복잡한 코드와 메모리 관리가 필요합니다.

해결책:

  • 이것을 해결하기 위해 자동으로 몇번 GPU를 얼만큼만 할당할지 정해주는 코드를 만들었습니다.
  • 함수 하나만 사용하면 됩니다.
# On the top of the code
from tf_alloc import allocate as talloc
talloc(gpu=1, percentage=0.5)

import tensorflow as tf
""" your code"""
  • 맨위에 tf_alloc에서 allocate함수를 불러다가 gpu파라미터와 percentage 파라미터를 주어 호출합니다.
  • 그러면 자동으로 몇번의 GPU를 얼만큼의 비율로 사용할지 정해서 할당합니다.
  • 매우 쉽습니다.

파라미터 설명

  • gpu = 몇범 GPU를 쓸 것인지 GPU의 아이디를 넣어줍니다. (만약 gpu가 2개 있다면 0, 1 이 아이디가 됩니다.)

  • percentage = 선택한 GPU를 몇의 비율로 쓸건지 정해줍니다. (1.0을 넣으면 해당 GPU를 전부 씁니다)

  • 만약 percentage가 몇인지 모른다면 0에서 1 사이의 값을 넣어서 할당해보면 최대 사용가능량이 얼만큼이라고 에러를 출력하니까 걱정없이 사용하시면 됩니다. 다른 훈련에 방해를 주지 않기 때문에, nvidia-smi를 쳐가면서 할당을 하는 것보다 매우 안정적입니다.

  • 핵심기능만 한국어로 써 놓았고, 다른 기능은 영문버전을 확인해보시면 감사하겠습니다.

Owner
Junseo Ko
🙃 AI Engineer 😊
Junseo Ko
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022