The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

Overview

SiamTPN

Introduction

This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer into Siamese network, achieving state-of-the-art performance (better than DiMP) while runing 30 FPS on a single CPU. The tracker optimized with ONXX and openvino could run at 45 FPS on cpu end, leading promising performance when deploying on drones for tracking.

AO_Speed_GOT10K

[Paper] [Raw Results] [Drone Tracking Videos] [Models]

Training

prepare data

change the path in lib/train/admin/local.py to your data location

# Distributed training withh 4 nodes 
python -m torch.distributed.launch --nproc_per_node 4 tools/run_training.py --config shufflenet_l345_192
# single gpu training for test purpose
python tools/run_training.py --config shufflenet_l345_192

Test and evaluate SiamTPN

prepare data

change the path in lib/test/evaluation/local.py to your data location

running on cpu

# Download the pretrain model and put it under ./results/checkpoints/train/SiamTPN/ folder

python tools/test.py siamtpn shufflenet_l345_192 --dataset_name got10k_val --debug 1 --cpu 1 --epoch 100 --sequence GOT-10k_Val_000001

running on cpu with onnx optimized

The debug mode will show tracking results, more details refer to tools/test.py

Currently, onnx only support cpu version

First, you need to install onxx and onxxruningtime:

pip install onxx
# for onxx runining time, download the openvino version from release [page](https://github.com/intel/onnxruntime/releases/tag/v3.1) and install with
pip install onnxruntime_openvino-1.9.0-cp37-cp37m-linux_x86_64.whl

# please refer the [page](https://github.com/intel/onnxruntime/releases/tag/v3.1) for openvino installation details.
# Download the converted onnx model and put it under ./results/onnx/ folder
# or conver your own model with 
python tools/onnx_search.py
python tools/onnx_template.py

python tools/test.py siamtpn_onnx shufflenet_l345_192 --dataset_name got10k_val --debug 1 --cpu 1 --epoch 100 --sequence GOT-10k_Val_000001

Citation

Acknowledge

Our code is implemented based on the following libraries:

Owner
Robotics and Intelligent Systems Control @ NYUAD
Robotics and Intelligent Systems Control @ NYUAD
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023