Adaptive Attention Span for Reinforcement Learning

Overview

Adaptive Transformers in RL

Official implementation of Adaptive Transformers in RL

In this work we replicate several results from Stabilizing Transformers for RL on both Pong and rooms_select_nonmatching_object from DMLab30.

We also extend the Stable Transformer architecture with Adaptive Attention Span on a partially observable (POMDP) setting of Reinforcement Learning. To our knowledge this is one of the first attempts to stabilize and explore Adaptive Attention Span in an RL domain.

Steps to replicate what we did on your own machine

  1. Downloading DMLab:

  2. Downloading Atari: Getting Started with Gym– http://gym.openai.com/docs/#getting-started-with-gym

  3. Execution notes:

  • The experiments take around 4 hours on 32vCPUs and 2 P100 GPUs for 6 million environment interactions. To run without a GPU, use the flag “--disable_cuda”.
  • For more details on other flags, see the top of train.py (include a link to this file) which has descriptions for each.
  • All experiments use a slightly revised version of IMPALA from torchbeast

Snippets

Best performing adaptive attention span model on “rooms_select_nonmatching_object”:

python train.py --total_steps 20000000 \
--learning_rate 0.0001 --unroll_length 299 --num_buffers 40 --n_layer 3 \
--d_inner 1024 --xpid row85 --chunk_size 100 --action_repeat 1 \
--num_actors 32 --num_learner_threads 1 --sleep_length 20 \
--level_name rooms_select_nonmatching_object --use_adaptive \
--attn_span 400 --adapt_span_loss 0.025 --adapt_span_cache

Best performing Stable Transformer on Pong:

python train.py --total_steps 10000000 \
--learning_rate 0.0004 --unroll_length 239 --num_buffers 40 \
--n_layer 3 --d_inner 1024 --xpid row82 --chunk_size 80 \
--action_repeat 1 --num_actors 32 --num_learner_threads 1 \
--sleep_length 5 --atari True

Best performing Stable Transformer on “rooms_select_nonmatching_object”:

python train.py --total_steps 20000000 \
--learning_rate 0.0001 --unroll_length 299 \
--num_buffers 40 --n_layer 3 --d_inner 1024 \
--xpid row79 --chunk_size 100 --action_repeat 1 \
--num_actors 32 --num_learner_threads 1 --sleep_length 20 \
--level_name rooms_select_nonmatching_object  --mem_len 200

Reference

If you find this repository useful, do cite it with,

@article{kumar2020adaptive,
    title={Adaptive Transformers in RL},
    author={Shakti Kumar and Jerrod Parker and Panteha Naderian},
    year={2020},
    eprint={2004.03761},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023