METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Overview

Nautilus-OCR

The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on article level, back in 2006. Service providers were asked to create images of excellent quality, to run an optical layout recognition process, to identify articles and to run OCR on them. The data was modeled according to the METS/ALTO standard. In the meantime however, the potential of OCR software increased.

Developed by BnL in the context of its Open Data initiative, Nautilus-OCR uses these improvements in technology and the already structured data to rerun and enhance OCR. Nautilus-OCR can be used in two ways:

  1. Main purpose: Enhance the OCR quality of original (ori) METS/ALTO packages.

    drawing
    Nautilus-OCR METS/ALTO to METS/ALTO pipeline:
    - Extracts all ori images/text pairs
    - Targets a specific set of block types
    - Uses enhancement prediction on every target to possibly run OCR
    - Integrates new outputs into an updated METS/ALTO package

  2. Alternatively: Use as a regular OCR engine that is applied on a set of images.

    drawing
    Nautilus-OCR provides the possibility to visually compare ori (left) to new (right) outputs.

Key features:
  • Custom model training.
  • Included pre-trained OCR, font recognition and enhancement prediction models.
  • METS/ALTO to METS/ALTO using enhancement prediction.
  • Fast, multi-font OCR pipeline.

Nautilus-OCR is mainly built on open-source libraries combined with some proprietary contributions. Please note that the project is trying to be a generalized version of a tailored implementation for the specific needs of BnL.

Table of Contents

Quick Start

After having followed the installation instructions, Nautilus-OCR can be run by using the included BnL models and example METS/ALTO data.

With nautilusocr/ as the current working directory, first copy the BnL models to the final/ folder.1

cp models/bnl/* models/final/

Next, run enhance on the examples/ directory, containg a single mets-alto-package/

python3 src/main.py enhance -d examples/ -r 0.02

to generate new ALTO files for every block with a minimum enhancement prediction of 2%. Finally, the newly generated files can be located in output/.

1 As explained in models/final/README.md, the models within models/final/ are automatically applied when executing the enhance, train-epr, ocr and test-ocr actions. Models outside of models/final/ are supposed to be stored for testing and comparison purposes.

Requirements

Nautilus-OCR requires:

  • Linux / macOS
    The software requires dependencies that only work on Linux and macOS. Windows is not supported at the moment.
  • Python 3.8+
    The software has been developed using Python 3.8.5.
  • Dependencies
    Access to the libraries listed in requirements.txt.
  • METS/ALTO
    METS/ALTO packages as data, or alternatively TextBlock images representing single-column snippets of text.

Installation

With Python3 (tested on version 3.8.5) installed, clone this repostitory and install the required dependencies:

git clone https://github.com/natliblux/nautilusocr
cd nautilusocr
pip3 install -r requirements.txt

Hunspell dependency might require:

apt-get install libhunspell-dev
brew install hunspell

OpenCV dependency might require:

apt install libgl1-mesa-glx
apt install libcudart10.1

You can test that all dependencies have been sucessfully installed by running

python3 src/main.py -h

and looking for the following output:

Starting Nautilus-OCR

usage: main.py [-h] {set-ocr,train-ocr,test-ocr,enhance,ocr,set-fcr,train-fcr,test-fcr,test-seg,train-epr,test-epr} ...

Nautilus-OCR Command Line Tool

positional arguments:
  {set-ocr,train-ocr,test-ocr,enhance,ocr,set-fcr,train-fcr,test-fcr,test-seg,train-epr,test-epr}
                        sub-command help

optional arguments:
  -h, --help            show this help message and exit

Workflow

The command-line tool consists of four different modules, with each one exposing a predefined set of actions:

  • ocr - optical character recognition
  • seg - text line segmentation
  • fcr - font class recognition
  • epr - enhancement prediction

To get started, one should take note of the options available in config.ini and most importantly set the device (CPU/GPU) parameter and decide on the set of font_classes and supported_languages. Next, a general workflow could looks as follows:

  1. Test the seg algorithm using test-seg to see whether any parameters need to be adjusted.
  2. Create a fcr train set using set-fcr based on font ground truth information.
  3. Train a fcr model using train-fcr.
  4. Test the fcr model accurcy using test-fcr.
  5. Create an ocr train set using set-ocr based on ocr ground truth information.
  6. Train an ocr model for every font class using train-ocr.
  7. Test the ocr model for every font class using test-ocr.
  8. Train an epr model based on ground truth and ori data using train-epr.
  9. Test the epr model accuracy using test-epr.
  10. Enhance METS/ALTO packages using enhance.
  11. Alternatively: Run ocr on a set of images using ocr.

This id done by calling main.py followed by the desired action and options:

python3 src/main.py [action] [options]

The following module sections will list all available actions and options.

Modules

optical character recognition

set-ocr

Creates an ocr train set consisting of image/text line pairs. Every pair is of type New, Artificial or Existing:

  • New: Extracted using an image and ALTO file.
  • Generated: Image part of pair is generated artificially based on given input text.
  • Existing: Pair exists already (has been prepared beforehand) and is included in the train set.
Option Default Explanation
-j --jsonl Path to jsonl file referencing image and ALTO files 1 2
-c --confidence 9 (max tolerant) Highest tolerated confidence value for every character in line
-m --model fcr-model Name of fcr model to be used in absence of font class indication 3
-e --existing Path to directory containing existing pairs 4 5
-g --generated 0 (none) Number of artificially generated pairs to be added per font class 6 7
-t --text Path to text file containing text for artificial pairs 8
-n --nlines -1 (max) Maximum number of pairs per font class
-s --set ocr-train-set Name of ocr train set

1 Example lines:

{"image": "/path/image1.png", "gt": "/path/alto1.xml"}
{"image": "/path/image2.png", "gt": "/path/alto2.xml", "gt-block-id": "TB1"}
{"image": "/path/image3.png", "gt": "/path/alto3.xml", "gt-block-id": "TB2", "font": "fraktur"}

2 Key gt-block-id can optionally reference a single block in a multi-block ALTO file.
3 Absence of font key means that -m option must be set to automatically determine the font class.
4 Naming convention for existing pairs: [pair-name].png/.tif & [pair-name].gt.txt.
5 Image part of existing pairs is supposed to be unbinarized.
6 Artificially generated lines represent lower quality examples for the model to learn from.
7 Fonts in fonts/artificial/ are being randomly used and can be adjusted per font class.
8 Text is given by a .txt file with individual words delimited by spaces and line breaks.

train-ocr

Trains an ocr model for a specific font using an ocr train set.

Option Default Explanation
-s --set Name of ocr train set to be used
-f --font Name of font that ocr model should be trained on
-m --model ocr-model Name of ocr model to be created

test-ocr

Tests models in models/final/ on a test set defined by a jsonl file.
A comparison to the original ocr data can optionally be drawn.

Option Default Explanation
-j --jsonl Path to jsonl file referencing image and ground truth ALTO files 1 2
-i --image False Generate output image comparing ocr output with source image
-c --confidence False Add ocr confidence (through font greyscale level) to output image

1 Example lines:

{"id": "001", "image": "/path/image1.png", "gt": "/path/alto1.xml"}
{"id": "002", "image": "/path/image2.png", "gt": "/path/alto2.xml", "gt-block-id": "TB1"}
{"id": "003", "image": "/path/image3.png", "gt": "/path/alto3.xml", "gt-block-id": "TB2", "ori": "/path2/alto3.xml"}
{"id": "004", "image": "/path/image4.png", "gt": "/path/alto4.xml", "gt-block-id": "TB3", "ori": "/path2/alto4.xml", "ori-block-id": "TB4"}

2 Keys ori and ori-block-id can optionally reference original ocr output for comparison purposes.

enhance

Applies ocr on a set of original METS/ALTO packages, while aiming to enhance ocr accuracy.1
An optional enhancement prediction model can prevent running ocr for some target blocks.
Models in models/final/ are automatically used for this action.2

Option Default Explanation
-d --directory Path to directory containing all orignal METS/ALTO packages 3 4
-r --required 0.0 Value for minimum required enhancement prediction 5

1 Target text block types can be adjusted in config.ini.
2 The presence of an epr model is optional.
3 METS files need to end in -mets.xml.
4 Every package name should be unique and is defined as the directory name of the METS file.
5 Enhancement predictions are in range [-1,1], set to -1 to disable epr and automatically reprocess all target blocks.

ocr

Applies ocr on a directory of images while using the models in models/final/.

Option Default Explanation
-d --directory Path to directory containing target ocr source images 1
-a --alto False Output ocr in ALTO format
-i --image False Generate output image comparing ocr with source image
-c --confidence False Add ocr confidence (through font greyscale level) to output image

1 Subdirectories possible, images should be in .png or .tif format.

text line segmentation

test-seg

Tests the CombiSeg segmentation algorithm on a test set defined by a jsonl file. The correct functionning of the segmentation algorithm is essential for most other modules and actions.
The default parameters should generally work well, however they can be adjusted. 1

Option Default Explanation
-j --jsonl path to jsonl file referencing image and ALTO files 2

1 Algorithm parameters can be adjusted in config.ini in case of unsatisfactory performance.
2 Example lines:

{"image": "/path/image1.png", "gt": "/path/alto1.xml"}
{"image": "/path/image2.png", "gt": "/path/alto2.xml", "gt-block-id": "TB1"}

font class recognition

set-fcr

Creates a fcr train set consisting of individual character images.

Option Default Explanation
-j --jsonl Path to jsonl file referencing image files and the respective font classes 1
-n --nchars max Maximum number of characters extracted from every image 2
-s --set fcr-train-set Name of fcr train set

1 Example line:

{"image": "/path/image.png", "font": "fraktur"}

2 Fewer extracted chars for a larger amount of images generally leads to a more diverse train set.

train-fcr

Trains a fcr model using a fcr train set.

Option Default Explanation
-s --set Name of fcr train set
-m --model fcr-model Name of fcr model to be created

test-fcr

Tests a fcr model on a test set defined by a jsonl file.

Option Default Explanation
-j --jsonl Path to jsonl file referencing image files and the respective font classes 1
-m --model fcr-model Name of fcr model to be tested

1 Example line:

{"image": "/path/image.png", "font": "fraktur"}

enhancement prediction

This module requires language dictionaries. For all language xx in supported_languages in config.ini, please either add a list of words as xx.txt or the Hunspell files xx.dic and xx.aff to dicts/.

train-epr

Trains an epr model (for use in enhance) that predicts the enhancement in ocr accuracy (from ori to new) and can hence be used to prevent ocr from running on all target blocks.
Please take note of the parameters in config.ini before starting training.
This action uses the models in models/final/.

Option Default Explanation
-j --jsonl Path to jsonl file referencing image, ground truth ALTO and original ALTO files 1
-m --model epr-model Name of epr model to be created

1 Example lines:

{"image": "/path/image1.png", "gt": "/path/alto1.xml", "ori": "/path/alto1.xml", "year": 1859}
{"image": "/path/image2.png", "gt": "/path/alto2.xml", "gt-block-id": "TB1", "ori": "/path/alto2.xml", "year": 1859}
{"image": "/path/image3.png", "gt": "/path/alto3.xml", "gt-block-id": "TB2", "ori": "/path/alto3.xml", "ori-block-id": "TB2", "year": 1859}

test-epr

Tests an epr model and returns the mean average error after applying leave-one-out cross-validation (kNN algorithm).

Option Default Explanation
-m --model epr-model Name of epr model to be tested

Models

Nautilus-OCR encloses four pre-trained models:

  • bnl-ocr-antiqua.mlmodel

OCR model built with kraken and trained on the antiqua data (70k pairs) of an extended version of bnl-ground-truth-newspapers-before-1878 that is not limited to the cut-off date of 1878.

  • bnl-ocr-fraktur.mlmodel

OCR model built with kraken and trained on the fraktur data (43k pairs) of an extended version of bnl-ground-truth-newspapers-before-1878 that is not limited to the cut-off date of 1878.

  • bnl-fcr.h5

Binary font recognition model built with TensorFlow and trained to perform classification using font classes [antiqua, fraktur]. Please note that the fcr module automatically extends the set of classes to [antiqua, fraktur, unknown], to cover for the case where the neural network input preprocessing fails. The model has been trained on 50k individual character images and showed 100% accuracy on a 200 image test set.

  • bnl-epr-de-fr-lb.jsonl

Enhancement prediction model trained on more than 4.5k text blocks for the language set [de, fr, lb]. Training data has been published between 1840 and 1960. Enhancement is predicted for the application of bnl-ocr-antiqua.mlmodel and bnl-ocr-fraktur.mlmodel, therefore based on font class set [antiqua, fraktur]. The model makes use of the dictionaries for all three languages within dicts/. Using leave-one-out cross-validation (kNN algorithm), mean average error of 0.024 was achieved.

Ground Truth

bnl-ground-truth-newspapers-before-1878

OCR ground truth dataset including more than 33k text line image/text pairs, split in antiqua (19k) and fraktur (14k) font classes. The set is based on Luxembourg historical newspapers in the public domain (published before 1878), written generally in German, French and Luxembourgish. Transcription was done using a double-keying technique with a minimum accuracy of 99.95%. Font class was automatically determined using bnl-fcr.h5.

Libraries

Nautilus-OCR is mostly built on open-source libraries, with the most important ones being:

License

License: GPL v3

See COPYING to see full text.

Credits

Thanks and credits go to the Lexicolux project, whose work is the basis for the generation of dicts/lb.txt.

Contact

If you want to get in touch, please contact us here.

Owner
National Library of Luxembourg
National Library of Luxembourg
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022