MoveNet Single Pose on DepthAI

Overview

MoveNet Single Pose tracking on DepthAI

Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...).

A convolutional neural network model that runs on RGB images and predicts human joint locations of a single person. Two variant: Lightning and Thunder, the latter being slower but more accurate. MoveNet uses an smart cropping based on detections from the previous frame when the input is a sequence of frames. This allows the model to devote its attention and resources to the main subject, resulting in much better prediction quality without sacrificing the speed.

Demo

For MoveNet on OpenVINO, please visit : openvino_movenet

Architecture: Host mode vs Edge mode

The cropping algorithm determines from the body detected in frame N, on which region of frame N+1 the inference will run. The mode (Host or Edge) describes where this algorithm is run :

  • in Host mode, the cropping algorithm is run on the host cpu. Only this mode allows images or video files as input. The flow of information between the host and the device is bi-directional: in particular, the host sends frames or cropping instructions to the device;
  • in Edge mode, tthe cropping algorithm is run on the MyriadX. So, in this mode, all the bricks of MoveNet (inference, determination of the cropping region for next frame, cropping) are executed on the device. The only information exchanged are the body keypoints and the camera video frame.

Note: in either mode, when using the color camera, you can choose to disable the sending of the video frame to the host, by specifying "rgb_laconic" instead of "rgb" as input source.

Architecture

Install

Currently, the scripting node capabilty is an alpha release. It is important to use the version specified in the requirements.txt

Install the python packages DepthAI, Opencv with the following command:

python3 -m pip install -r requirements.txt

Run

Usage:

> python3 demo.py -h                                               
usage: demo.py [-h] [-e] [-m MODEL] [-i INPUT] [-s SCORE_THRESHOLD]
               [--internal_fps INTERNAL_FPS]
               [--internal_frame_size INTERNAL_FRAME_SIZE] [-o OUTPUT]

optional arguments:
  -h, --help            show this help message and exit
  -e, --edge            Use Edge mode (the cropping algorithm runs on device)
  -m MODEL, --model MODEL
                        Model to use : 'thunder' or 'lightning' or path of a
                        blob file (default=thunder
  -i INPUT, --input INPUT
                        'rgb' or 'rgb_laconic' or path to video/image file to
                        use as input (default: rgb)
  -s SCORE_THRESHOLD, --score_threshold SCORE_THRESHOLD
                        Confidence score to determine whether a keypoint
                        prediction is reliable (default=0.200000)
  --internal_fps INTERNAL_FPS
                        Fps of internal color camera. Too high value lower NN
                        fps (default: depends on the model
  --internal_frame_size INTERNAL_FRAME_SIZE
                        Internal color camera frame size (= width = height) in
                        pixels (default=640)
  -o OUTPUT, --output OUTPUT
                        Path to output video file

Examples :

  • To use default internal color camera as input with the Thunder model (Host mode):

    python3 demo.py

  • To use default internal color camera as input with the Thunder model (Edge mode):

    python3 demo.py -e

  • To use default internal color camera as input with the Lightning model :

    python3 demo.py -m lightning

  • To use a file (video or image) as input with the Thunder model :

    python3 demo.py -i filename

  • When using the internal camera, to change its FPS to 15 :

    python3 BlazeposeOpenvino.py --internal_fps 15

    Note: by default, the internal camera FPS is set to 26 for Lightning, and to 12 for Thunder. These values are based on my own observations. Please, don't hesitate to play with this parameter to find the optimal value. If you observe that your FPS is well below the default value, you should lower the FPS with this option until the set FPS is just above the observed FPS.

  • When using the internal camera, you may not need to work with the full resolution. You can work with a lower resolution (and win a bit of FPS) by using this option:

    python3 BlazeposeOpenvino.py --internal_frame_size 450

    Note: currently, depthai supports only some possible values for this argument. The value you specify will be replaced by the closest possible value (here 432 instead of 450).

Keypress Function
space Pause
c Show/hide cropping region
f Show/hide FPS

The models

They were generated by PINTO from the original models Thunder V3 and Lightning V3. Currently, they are an slight adaptation of the models available there: https://github.com/PINTO0309/PINTO_model_zoo/tree/main/115_MoveNet. This adaptation should be temporary and is due to the non support by the depthai ImageManip node of interleaved images.

Code

To facilitate reusability, the code is splitted in 2 classes:

  • MovenetDepthai, which is responsible of computing the body keypoints. The importation of this class depends on the mode:
# For Host mode:
from MovenetDepthai import MovenetDepthai
# For Edge mode:
from MovenetDepthaiEdge import MovenetDepthai
  • MovenetRenderer, which is responsible of rendering the keypoints and the skeleton on the video frame.

This way, you can replace the renderer from this repository and write and personalize your own renderer (for some projects, you may not even need a renderer).

The file demo.py is a representative example of how to use these classes:

from MovenetDepthai import MovenetDepthai
from MovenetRenderer import MovenetRenderer

# I have removed the argparse stuff to keep only the important code

pose = MovenetDepthai(input_src=args.input, 
            model=args.model,    
            score_thresh=args.score_threshold,           
            internal_fps=args.internal_fps,
            internal_frame_size=args.internal_frame_size
            )

renderer = MovenetRenderer(
                pose, 
                output=args.output)

while True:
    # Run blazepose on next frame
    frame, body = pose.next_frame()
    if frame is None: break
    # Draw 2d skeleton
    frame = renderer.draw(frame, body)
    key = renderer.waitKey(delay=1)
    if key == 27 or key == ord('q'):
        break
renderer.exit()
pose.exit()

Examples

Semaphore alphabet Sempahore alphabet
Yoga Pose Classification Yoga Pose Classification

Credits

CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022