Polynomial-time Meta-Interpretive Learning

Related tags

Deep Learninglouise
Overview

Louise - polynomial-time Program Learning

Getting help with Louise

Louise's author can be reached by email at [email protected]. Please use this email to ask for any help you might need with using Louise.

Louise is brand new and, should you choose to use it, you will most probably encounter errors and bugs. The author has no way to know of what bugs and errors you encounter unless you report them. Please use the author's email to contact the author regarding bugs and errors. Alternatively, you are welcome to open a github Issue or send a pull request.

Table of contents

Overview
Capabilities
Learning logic programs with Louise
Running examples in Swi-Prolog
Learning the "ancestor" relation
Dynamic learning and predicate invention
Examples invention
Experiment scripts
Further documentation

Overview

Louise (Patsantzis & Muggleton 2021) is a machine learning system that learns Prolog programs.

Louise is based on a new program learning algorithm, called Top Program Construction, that runs in polynomial time. Louise can learn recursive programs, including left-recursive and mutually recursive programs and perform multi-predicate learning, predicate invention and examples invention, among other things. Louise includes the program TOIL that can learn metarules for MIL systems, including Louise itself.

Louise is a Meta-Interpretive Learning (MIL) system. MIL (Muggleton et al. 2014), (Muggleton et al. 2015), is a new setting for Inductive Logic Programming (ILP) (Muggleton, 1991). ILP is the branch of machine learning that studies algorithms learning logic programs from examples, background knowledge and a language bias that determines the structure of learned programs. In MIL, the language bias is defined by a set of second-order clause templates called metarules. Examples, background knowledge and metarules must be provided by the user, but Louise can perform predicate invention to extend its background knowledge and metarules and so learn programs that are impossible to learn only from its initial data. Louise can also learn new metarules from examples of a learning target. Finally, Louise can perform examples invention to extend its set of given examples.

In this manual we show simple examples where Louise is trained on small, "toy" problems, designed to demonstrate its use. However, Louise's learning algorithm, Top Program Construction, is efficient enough to learn very large programs. In one of the example datasets included with Louise, a program of more than 2,500 clauses is learned in under 5 minutes.

In general, Louise's novelty means that it has so far primarily been applied to artificial datasets designed to demonstrate its working principles rather than realise its full potential. Work is underway to apply Louise on more challenging problems, including more real-world applications. Keep in mind that Louise is maintained by a single PhD student. New developments should be expected to come at a leisurely pace.

Capabilities

Here are some of the things that Louise can do.

  1. Louise can learn recursive programs, including left-recursive programs:

    ?- learn(ancestor/2).
    ancestor(A,B):-parent(A,B).
    ancestor(A,B):-ancestor(A,C),ancestor(C,B).
    true.

    See data/examples/tiny_kinship.pl for the ancestor example (and other simple, toy examples of learning kinship relations, ideal for first time use).

    See the section Learning logic programs with Louise for more information on learning logic programs with Louise.

  2. Louise can simultaneously learn multiple dependent programs, including mutuallly recursive programs. This is called multi-predicate learning:

    ?- learn([even/1,odd/1]).
    even(0).
    even(A):-predecessor(A,B),odd(B).
    odd(A):-predecessor(A,B),even(B).
    true.

    See data/examples/multi_pred.pl for the odd/1 and even/1 multi-predicate learning example.

  3. Louise can discover relevant background knowledge. In the odd/1 and even/1 example above, each predicate is only explicitly given predecessor/2 as a background predicate. The following are the background knowledge declarations for even/1 and odd/1 in data/examples/multi_pred.pl:

    background_knowledge(even/1, [predecessor/2]).
    background_knowledge(odd/1, [predecessor/2]).
    

    Louise figures out that odd/1 is necessary to learn even/1 and vice-versa on its own.

  4. Louise can perform predicate invention to incrase its background knowledge with new predicates that are necessary for learning. In the following example the predicate '$'1/2 is an invented predicate:

    ?- learn_dynamic('S'/2).
    '$1'(A,B):-'S'(A,C),'B'(C,B).
    'S'(A,B):-'A'(A,C),'$1'(C,B).
    'S'(A,B):-'A'(A,C),'B'(C,B).
    true.

    With predicate invention Louise can shift its inductive bias to learn programs that are not possible to learn from its initial set of background knowledge and metarules.

    See data/examples/anbn.pl for the 'S'/2 example.

    See the section Dynamic learning and predicate invention for more information on predicate invention in Louise.

  5. Louise can unfold programs to eliminate invented predicates. This is a version of the program in the previous example with the invented predicate '$1'/2 eliminated by unfolding:

    ?- learn_dynamic('S'/2).
    'S'(A,B):-'A'(A,C),'B'(C,B).
    'S'(A,B):-'A'(A,C),'S'(C,D),'B'(D,B).
    true.

    Eliminating invented predicates can sometimes improve comprehensibility of the learned program.

  6. Louise can fold over-specialised programs to introduce recursion. In the following example, an over-specialised program is learned that finds the last element of a list of length up to 3:

    ?- learn(list_last/2).
    list_last(A,B):-tail(A,C),empty(C),head(A,B).
    list_last(A,B):-tail(A,C),tail(C,D),empty(D),head(C,B).
    list_last(A,B):-tail(A,C),tail(C,D),tail(D,E),empty(E),head(D,B).
    true.

    We can observe that some clauses in the program above include sequences of body literals that match the body literals in other clauses. The predicate fold_recursive/2 can be used to replace body literals in a clause with an equivalent recursive call:

    ?- learn(list_last/2, _Ps), fold_recursive(_Ps, _Fs), maplist(print_clauses,['%Learned:','\n%Folded:'], [_Ps,_Fs]).
    %Learned:
    list_last(A,B):-tail(A,C),empty(C),head(A,B).
    list_last(A,B):-tail(A,C),tail(C,D),empty(D),head(C,B).
    list_last(A,B):-tail(A,C),tail(C,D),tail(D,E),empty(E),head(D,B).
    
    %Folded:
    list_last(A,B):-tail(A,C),empty(C),head(A,B).
    list_last(A,B):-tail(A,C),list_last(C,B).
    true.

    Note the new clause list_last(A,B):-tail(A,C),list_last(C,B). replacing the second and third clause in the original program. The new, recursive hypothesis is now a correct solution for lists of arbitrary length.

    The list_last example above was taken from Inductive Logic Programming at 30 (Cropper et al., Machine Learning 2021, to appear). See data/examples/recursive_folding.pl for the complete example source code.

  7. Louise can invent new examples. In the following query a number of examples of path/2 are invented. The background knowledge for this MIL problem consists of 6 edge/2 ground facts that determine the structure of a graph and a few facts of not_edge/2 that represent nodes not connected by edges. path(a,f) is the single given example. The target theory for this problem is a recursive definition of path/2 that includes a "base case" for which no example is given. Louise can invent examples of the base-case and so learn a correct hypothesis that represents the full path from node 'a' to node 'f', without crossing any non-edges.

    ?- learn(path/2).
    path(a,f).
    true.
    
    ?- examples_invention(path/2,_Es), print_clauses(_Es).
    m(path,a,b).
    m(path,a,c).
    m(path,a,d).
    m(path,a,e).
    m(path,a,f).
    m(path,b,c).
    m(path,b,d).
    m(path,b,e).
    m(path,b,f).
    m(path,c,d).
    m(path,c,e).
    m(path,c,f).
    m(path,d,e).
    m(path,d,f).
    m(path,e,f).
    true.
    
    ?- learn_with_examples_invention(path/2).
    path(A,B):-edge(A,B).
    path(A,B):-edge(A,C),path(C,B).
    true.

    See data/examples/example_invention.pl for the path/2 example.

    See the section Examples invention for more information on examples invention in Louise.

  8. Louise can learn new metarules from examples of a target predicate. In the following example, Louise learns a new metarule from examples of the predicate 'S'/2 (as in item 4, above):

    ?- learn_metarules('S'/2).
    (Meta-dyadic-1) ∃.P,Q,R ∀.x,y,z: P(x,y)← Q(x,z),R(z,y)
    true.

    The new metarule, Meta-dyadic-1 corresponds to the common Chain metarule that is used in item 4 to learn a grammar of the a^nb^n language.

    Louise can learn new metarules by specialising the most-general metarule in each language class. In the example above, the language class is H(2,2), the language of metarules having exactly three literals of arity 2. The most general metarule in H(2,2) is Meta-dyadic:

    ?- print_quantified_metarules(meta_dyadic).
    (Meta-dyadic) ∃.P,Q,R ∀.x,y,z,u,v,w: P(x,y)← Q(z,u),R(v,w)
    true.   

    Louise can also learn new metarules given only an upper and lower bound on their numbers of literals. In the example of learning Chain above, instead of specifying Meta-dyadic, we can instead give an upper and lower bound of 3, with a declaration of higher_order(3,3).

  9. Louise comes with a number of libraries for tasks that are useful when learning programs with MIL, e.g. metarule generation, program reduction, lifting of ground predicates, etc. These will be discussed in detail in the upcoming Louise manual.

Learning logic programs with Louise

In this section we give a few examples of learning simple logic programs with Louise. The examples are chosen to demonstrate Louise's usage, not to convince of Louise's strengths as a learner. All the examples in this section are in the directory louise/data/examples. After going through the examples here, feel free to load and run the examples in that directory to better familiarise yourself with Louise's functionality.

Running examples in Swi-Prolog

Swi-Prolog is a popular, free and open-source Prolog interpreter and development environment. Louise was written for Swi-Prolog. To run the examples in this section you will need to install Swi-Prolog. You can download Swi-Prolog from the following URL:

https://www.swi-prolog.org/Download.html

Louise runs with any of the latest stable or development releases listed on that page. Choose the one you prefer to download.

It is recommended that you run the examples using the Swi-Prolog graphical IDE, rather than in a system console. On operating systems with a graphical environment the Swi-Prolog IDE should start automaticaly when you open a Prolog file.

In this section, we assume you have cloned this project into a directory called louise. Paths to various files will be given relative to the louise project root directory and queries at the Swi-Prolog top-level will assume your current working directory is louise.

Learning the "ancestor" relation

Louise learns Prolog programs from examples, background knowledge and second order clause templates called metarules. Together, examples, background knowledge and metarules form the elements of a MIL problem.

Louise expects the elements of a MIL problem to be in an experiment file with a standard format. The following is an example showing how to use Louise to learn the "ancestor" relation from the examples, background knowledge and metarules defined in the experiment file louise/data/examples/tiny_kinship.pl using the learning predicate learn/1.

In summary, there are four steps to running the example: a) start Louise; b) edit the configuration file to select tiny_kinship.pl as the experiment file; c) load the experiment file into memory; d) run a learning query. These four steps are described in detail below.

  1. Consult the project's load file into Swi-Prolog to load necessary files into memory:

    In a graphical environment:

    ?- [load_project].

    In a text-based environment:

    ?- [load_headless].

    The first query will also start the Swi-Prolog IDE and documentation browser, which you probably don't want if you're in a text-based environment.

  2. Edit the project's configuration file to select an experiment file.

    Edit louise/configuration.pl in the Swi-Prolog editor (or your favourite text editor) and make sure the name of the current experiment file is set to tiny_kinship.pl:

    experiment_file('data/examples/tiny_kinship.pl',tiny_kinship).

    The above line will already be in the configuration file when you first clone Louise from its github repository. There will be a few more clauses of experiment_file/2, each on a seprate line and commented-out. These are there to quickly change between different experiment files without having to re-write their paths every time. Make sure that only a single experiment_file/2 clause is loaded in memory (i.e. don't uncomment any other experiment_file/2 clause except for the one above).

  3. Reload the configuration file to pick up the new experiment file option.

    The easiest way to reload the configuration file is to use Swi-Prolog's make/0 predicate to recompile the project (don't worry- this takes less than a second). To recompile the project with make/0 enter the following query in the Swi-Prolog console:

    ?- make.

    Note again: this is the Swi-Prolog predicate make/0. It's not the make build automation tool!

  4. Perform a learning attempt using the examples, background knowledge and metarules defined in tiny_kinship.pl for ancestor/2.

    Execute the following query in the Swi-Prolog console; you should see the listed output:

    ?- learn(ancestor/2).
    ancestor(A,B):-parent(A,B).
    ancestor(A,B):-ancestor(A,C),ancestor(C,B).
    true.

    The learning predicate learn/1 takes as argument the predicate symbol and arity of a learning target defined in the currently loaded experiment file. ancestor/2 is one of the learning targets defined in tiny_kinship.pl, the experiment file selected in step 2. The same experiment file defines a number of other learning targets from a typical kinship relations domain.

Dynamic learning and predicate invention

The predicate learn/1 implements Louise's default learning setting that learns a program one-clause-at-a-time without memory of what was learned before. This is limited in that clauses learned in an earlier step cannot be re-used and so it's not possible to learn programs with mutliple clauses "calling" each other, or single recursive clauses that can only be self-resolved.

Louise overcomes this limitation with Dynamic learning, a learning setting where programs are learned incrementally: the program learned in each dynamic learning episode is added to the background knowledge for the next episode. Dynamic learning also permits predicate invention, by inventing, and then re-using, definitions of new predicates that are necessary for learning but are not in the background knowledge defined by the user.

The example of learning the a^nb^n language in section Capabilities is an example of learning with dynamic learning. The result is a grammar in Prolog's Definite Clause Grammars formalism DCG. Below, we list the steps to run this example yourself. The steps to run this example are similar to the steps to run the ancestor/2 example, only this time the learning predicate is learn_dynamic/1:

  1. Start the project:

    In a graphical environment:

    ?- [load_project].

    In a text-based environment:

    ?- [load_headless].
  2. Edit the project's configuration file to select the anbn.pl experiment file.

    experiment_file('data/examples/anbn.pl',anbn).
  3. Reload the configuration file to pick up the new experiment file option.

    ?- make.
  4. Perform an initial learning attempt without Dynamic learning:

    ?- learn('S'/2).
    'S'([a,a,a,b,b,b],[]).
    'S'([a,a,b,b],[]).
    'S'(A,B):-'A'(A,C),'B'(C,B).
    true.

    The elements for the learning problem defined in the anbn.pl experiment file only include three example strings in the a^nb^n language, the pre-terminals in the language, 'A' --> [a]. and 'B' --> [b]. (where 'A','B' are nonterminal symbols and [a],[b] are terminals) and the Chain metarule. Given this problem definition, Louise can only learn a single new clause of 'S/2' (the starting symbol in the grammar), that only covers its first example, the string 'ab'.

  5. Perform a second learning attemt with dynamic lerning:

    ?- learn_dynamic('S'/2).
    '$1'(A,B):-'S'(A,C),'B'(C,B).
    'S'(A,B):-'A'(A,C),'$1'(C,B).
    'S'(A,B):-'A'(A,C),'B'(C,B).
    true.

    With dynamic learning, Louise can re-use the first clause it learns (the one covering 'ab', listed above) to invented a new nonterminal, $1/2, that it can then use to construct the full grammar.

Examples invention

Louise can perform examples invention which is just what it sounds like. Examples invention works best when you have relevant background knowledge and metarules but insufficient positive examples to learn a correct hypothesis. It works even better when you have at least some negative examples. If your background knowledge is irrelevant or you don't have "enough" negative examples (where "enough" depends on the MIL problem) then examples invention can over-generalise and produce spurious results.

The learning predicate for examples invention in Louise is learn_with_examples_invention/2. Below is an example showing how to use it, again following the structure of the examples shown previously.

  1. Start the project:

    In a graphical environment:

    ?- [load_project].

    In a text-based environment:

    ?- [load_headless].
  2. Edit the project's configuration file to select the examples_invention.pl experiment file.

    experiment_file('data/examples/examples_invention.pl',path).
  3. Reload the configuration file to pick up the new experiment file option.

    ?- make.
  4. Try a first learning attempt without examples invention:

    ?- learn(path/2).
    path(a,f).
    true.

    The single positive example in examples_invention.pl are insufficient for Louise to learn a general theory of path/2. Louise simply returns the single positive example, un-generalised.

  5. Perform a second learning attempt with examples invention:

    ?- learn_with_examples_invention(path/2).
    path(A,B):-edge(A,B).
    path(A,B):-edge(A,C),path(C,B).
    true.

    This time, Louise first tries to invent new examples of path/2 by training in a semi-supervised manner, and then uses these new examples to learn a complete theory of path/2.

You can see the examples invented by Louise with examples invention by calling the predicate examples_invention/2:

?- examples_invention(path/2,_Ps), print_clauses(_Ps).
m(path,a,b).
m(path,a,c).
m(path,a,f).
m(path,b,c).
m(path,b,d).
m(path,c,d).
m(path,c,e).
m(path,d,e).
m(path,d,f).
m(path,e,f).
true.

Experiment scripts

Louise stores experiment scripts in the directory data/scripts. An experiment script is the code for an experiment that you want to repeat perhaps with different configuration options and parameters. Louise comes with a "learning curve" script that runs an experiment varying the number of examples (or sampling rate) while measuring accuracy. The script generates a file with some R data that can then be rendered into a learning curve plot by sourcing a plotting script, also included in the scripts directory, with R.

The following are the steps to run a learning curve experiment with the data from the mtg_fragment.pl example experiment file and produce a plot of the results:

  1. Start the project:

    In a graphical environment:

    ?- [load_project].

    In a text-based environment:

    ?- [load_headless].
  2. Edit the project's configuration file to select the mtg_fragment.pl experiment file.

    experiment_file('data/examples/mtg_fragment.pl',mtg_fragment).
  3. Edit the learning curve script's configuration file to select necessary options and output directories:

    copy_plotting_scripts(scripts(learning_curve/plotting)).
    logging_directory('output/learning_curve/').
    plotting_directory('output/learning_curve/').
    r_data_file('learning_curve_data.r').
    learning_curve_time_limit(300).

    The option copy_plotting_scripts/1 tells the experiment script whether to copy the R plotting script from the scripts/learning_curve/plotting directory, to an output directory, listed in the option's single argument. Setting this option to false means no plotting script is copied. You can specify a different directory for plotting scripts to be copied from if you want to write your own plotting scripts.

    The options logging_directory/1 and plotting_directory/1 determine the destination directory for output logs, R data files and plotting scripts. They can be separate directories if you want. Above, they are the same which is the most convenient.

    The option r_data_file/1 determines the name of the R data file generated by the experiment script. Data files are clobbered each time the experiment re-runs (it's a bit of a hassle to point the plotting script to them otherwise) so you may want to output an experiment's R data script with a different name to preserve it. You'd have to manually rename the R data file so it can be used by the plotting script in that case.

    The option learning_curve_time_limit/1 sets a time limit for each learning attempt in a learning curve experiment. If a hypothesis is not learned successfully until this limit has expired, the accurracy (or error etc) of the empty hypothesis is measured instead.

  4. Reload all configuration files to pick up the new options.

    ?- make.

    Note that loading the main configuration file will turn off logging to the console. The next step directs you to turn it back on again so you can watch the experiment's progress.

  5. Enter the following queries to ensure logging to console is turned on.

    The console output will log the steps of the experiment so that you can keep track of the experiment's progress (and know that it's running):

    ?- debug(progress).
    true.
    
    ?- debug(learning_curve).
    true.

    Logging for the learning curve experiment script will have been turned off if you reloaded the main configuration file (because it includes the directive nodebug(_)). The two queries above turn it back on.

  6. Enter the following query to run the experiment script:

    _T = ability/2, _M = acc, _K = 100, float_interval(1,9,1,_Ss), learning_curve(_T,_M,_K,_Ss,_Ms,_SDs), writeln(_Ms), writeln(_SDs).

    _M = acc tells the experiment code to measure accuracy. You can also measure error, the reate of false positives, precision or recall, etc. _K = 100 runs the experiment for 100 steps. float_interval(1,9,1,_Ss) generates a list of floating-point values used as sampling rates in each step of the experiment: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9].

    The experiment code averages the accuracy of hypotheses learned with each sampling rate for all steps and also calculates the standard deviations. The query above will write the means (argument _Ms of learning_curve/6) and standard deviations (_SDs) in the console so you can have a quick look at the results. The same results are saved in a timestamped log file saved in the logging directory chosen in loggign_directory/1. Log files are not clobbered (unlike R data files, that are) and they include a copy of the R data saved to the R data file. That way you always have a record of each experiment completed and you can reconstruct the plots if needed (by copying the R data from a log file to an R data script and sourcing the plotting script).

  7. Source the plotting script in the console R to generate an image:

    source("<path_to_louise>\\louise\\output\\learning_curve\\plot_learning_curve_results.r")

    You can save the plot from the R console: select the image and go to File > Savea As > Png... (or other file format). Then choose a location to save the file.

    The figure below is the result of sourcing the R plotting script for the learning curve experiment with the mtg_fragment.pl data.

    Learning curve experiment plot.

Further documentation

More information about Louise, how it works and how to use it is coming up in the project's manual. For the time being, you can peruse the structured comments in the project's source files. It's also possible to generate a .pdf file from structured documentation, as follows:

  1. Load the project as usual.

  2. Load the doc/latex/maket_tex.pl module:

    ?- use_module(doc/latex/make_tex).
    true.
  3. Run the following query to generate latex files from structure documentation in the project's source code:

    ?- make_tex.
    true.
  4. Pass the main latex documentation file to pdflatex. By default the main documentation file is louise/doc/latex/documentation.tex

    cd /doc/latex/
    pdflatex -synctex=1 -interaction=nonstopmode .\documentation.tex
    pdflatex -synctex=1 -interaction=nonstopmode .\documentation.tex
    

    Run the pdflatex command twice to generate a ToC and bookmarks. You will probably see lots of errors but you will still get a .pdf file. Probably (this hasn't been tested extensively).

Note that the structured documentation included in the Prolog source is a work in progress. Most of the time it is mostly accurate, but there are parts of it that are obsolete. Still- better than nothing.

Additionally to all this you may get some useful information from the current draft of the manual stored in the file MAN.md in the directory louise/doc. Keep in mind that MAN.md is a draft and as such may contain incomplete or inaccurate information. On the other hand, it will probably give a general idea of how to use Louise and what it can do.

Citing Louise

If you wish to use Louise, please cite our work with the reference below:

@article{Patsantzis2021,
author = {Patsantzis, Stassa and Muggleton, Stephen},
title = {Top Program Construction for Polynomial Meta-Interpretive Learning},
journal = {Machine Learning},
year = {2021},
doi = {https://doi.org/10.1007/s10994-020-05945-w}
}

Bibliography

  1. S.H. Muggleton, D. Lin, N. Pahlavi, and A. Tamaddoni-Nezhad. Meta-interpretive learning: application to grammatical inference. Machine Learning, 94:25-49, 2014

  2. S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. Machine Learning, 100(1):49-73, 2015

  3. S.H. Muggleton. Inductive Logic Programming. New Generation Computing, 8(4):295-318, 1991

  4. S. Patsantzis and S. H. Muggleton. Top Program Construction for Polynomial-Time Meta-interpretive Learning. Machine Learning, 2021

Owner
Stassa Patsantzis
AI PhD student at Imperial College London, studying Inductive Logic Programming.
Stassa Patsantzis
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022